CONTINUITY AND DIFFERENTIABILITY

Single Correct Answer Type

1.	Let $[x]$ denotes the great a) $\lim_{x\to 0} f(x)$ does not exist	est integer less than or equ st	al to x and $f(x) = [\tan^2 x]$.	.Then,						
	b) $f(x)$ is continuous at									
	c) $f(x)$ is not differential									
	d) $f'(0) = 1$	bic acx								
2.		$\frac{(-e^x+2^x)}{x}$ may be continuou	s at $x = 0$ is							
	a) $\log\left(\frac{1}{2}\right)$	b) 0	c) 4	d) $-1 + \log 2$						
3.	Let $f(x)$ be an even func	tion. Then $f'(x)$								
	a) Is an even function		c) May be even or odd	d) None of these						
4.	If $f(x) = \begin{cases} [\cos \pi \ x], x < 0 \\ x - 2 , \ 2 > x \end{cases}$	< 1 $x \ge 1'$ then $f(x)$ is								
	a) Discontinuous and no	n-differentiable at $x = -1$ a	and $x = 1$							
	b) Continuous and differ									
	c) Discontinuous at $x =$	1/2								
	d) Continuous but not di									
5.	If $f(x) = \begin{cases} \frac{ x+2 }{\tan^{-1}(x+2)}, & x \neq 0 \\ 2, & x = -1 \end{cases}$	$\frac{1}{x} - 2$, then $f(x)$ is								
	a) Continuous at $x = -2$									
	b) Not continuous $x = -$	-2								
	c) Differentiable at $x = -$	-2								
	d) Continuous but not de	erivable at $x = -2$								
6.	If $f(x) = \log x $, then									
	a) $f(x)$ is continuous and differentiable for all x in its domain									
	b) $f(x)$ is continuous for									
	c) $f(x)$ is neither contin	$=\pm1$								
922	d) None of the above	<i>(</i> () <i>(</i> ()								
7.	If $f'(a) = 2$ and $f(a) =$	4, then $\lim_{x\to a} \frac{xf(a)-af(x)}{x-a}$ equa	ls							
	a) $2a - 4$	b) $4 - 2a$	c) $2a + 4$	d) None of these						
8.	If $f(x) = x(\sqrt{x} + \sqrt{x+1})$), then								
	a) $f(x)$ is continuous bu	t not differentiable at $x = 0$	b) $f(x)$ is differentiable at $x = 0$							
	c) $f(x)$ is not differential		d) None of the above							
9.	If $f(x) = \begin{cases} ax^2 + b, & b \neq 0, x \leq 1 \\ x^2b + ax + c, & x > 1 \end{cases}$, then, $f(x)$ is continuous and differentiable at $x = 1$, if									
	a) $c = 0, a = 2b$	b) $a = b, c \in R$	c) $a = b \cdot c = 0$	d) $a = b, c \neq 0$						
10.	For the function $f(x) =$	$\begin{cases} x-3 , \ x \ge 1\\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, \ x < 1 \end{cases}$ which	one of the following is inco	orrect?						
	a) Continuous at $x = 1$		c) Continuous at $x = 3$	d) Derivable at $x = 3$						

11. If
$$f: R \to R$$
 is defined by

$$f(x) = \begin{cases} \frac{2\sin x - \sin 2x}{2x\cos x}, & \text{if } x \neq 0, \\ a, & \text{if } x = 0 \end{cases}$$

12.
$$f(x) = x + |x|$$
 is continuous for

a)
$$x \in (-\infty, \infty)$$

b)
$$x \in (-\infty, \infty) - \{0\}$$

c) Only
$$x > 0$$

d) No value of
$$x$$

13. If the function

$$f(x) = \begin{cases} \{1 + |\sin x|\} \frac{a}{|\sin x|}, & -\frac{\pi}{6} < x < 0 \\ b, & x = 0 \\ e^{\frac{\tan 2x}{\tan 3x}}, & 0 < x < \frac{\pi}{6} \end{cases}$$

Is continuous at x = 0

a)
$$a = \log_e b$$
, $b = \frac{2}{3}$

b)
$$b = \log_e a$$
, $a = \frac{a}{2}$

c)
$$a = \log_e b$$
, $b = 2$

d) None of these

a)
$$a = \log_e b$$
, $b = \frac{2}{3}$ b) $b = \log_e a$, $a = \frac{2}{3}$ c) $a = \log_e b$, $b = 2$
14. If $f(x) = x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \dots + \frac{x^2}{(1+x^2)^n} + \dots$, then at $x = 0$, $f(x)$

- a) Has no limit
- b) Is discontinuous
- c) Is continuous but not differentiable
- d) Is differentiable

15. Let
$$f(x) = \begin{cases} 1, & \forall x < 0 \\ 1 + \sin x, & \forall 0 \le x \le \pi/2 \end{cases}$$
, then what is the value of $f'(x)$ at $x = 0$?

16. The function
$$f(x) = x - |x - x^2|$$
 is

a) Continuous at x = 1

b) Discontinuous at x = 1

c) Not defined at x = 1

d) None of the above

17. If
$$f(x + y + z) = f(x)$$
. $f(y)$. $f(z)$ for all x , y , z and $f(z) = 4$, $f'(0) = 3$, then $f'(z)$ equals

18. If
$$f(x) = |\log_e |x|$$
, then $f'(x)$ equals

$$a) \frac{1}{|x|}, x \neq 0$$

b)
$$\frac{1}{x}$$
 for $|x| > 1$ and $\frac{-1}{x}$ for $|x| < 1$

c)
$$\frac{-1}{x}$$
 for $|x| > 1$ and $\frac{1}{x}$ for $|x| < 1$

d)
$$\frac{1}{x}$$
 for $|x| > 0$ and $-\frac{1}{x}$ for $x < 0$

c)
$$\frac{-1}{x}$$
 for $|x| > 1$ and $\frac{1}{x}$ for $|x| < 1$
d) $\frac{1}{x}$ for $|x| > 0$ and $-\frac{1}{x}$ for $x < 0$
19. If the function $f(x) = \begin{cases} \frac{1-\cos x}{x^2}, & \text{for } x \neq 0 \\ k, & \text{for } x = 0 \end{cases}$ is continuous at $x = 0$, then the value of k is a) 1 b) 0

a) 1

c) $\frac{1}{2}$

d) -1

20. Function $f(x) = |x - 1| + |x - 2|, x \in R$ is

- a) Differentiable everywhere in R
- b) Except x = 1 and x = 2 differentiable everywhere in R
- c) Not continuous at x = 1 and x = 2
- d) Increasing in R
- 21. The set of points where the function $f(x) = \sqrt{1 e^{-x^2}}$ is differentiable is
- b) $(-\infty, 0) \cup (0, \infty)$ c) $(-1, \infty)$
- d) None of these
- 22. If $f(x) = x \sin(\frac{1}{x})$, $x \ne 0$, then the value of function at x = 0, so that the function is continuous at x = 0 is

8701 W2871	a) 1	b) -1	c) 0	d) Indeterminate
23.	The value of $f(0)$ so that	the function $f(x) = \frac{2-(256)}{(5x+32)}$	$\frac{-7x)^{1/8}}{2^{1/5}-2}$ $(x \neq 0)$ is continuou	s everywhere, is given by
	a) -1	b) 1	c) 26	d) None of these
24.	The derivative of $f(x) =$			NINGS CONTROL OF A STREET
25.	a) -1	b) 0	c) Does not exist	d) None of these
23.	If $f(x) = \begin{cases} \frac{(x-1)}{\sin(\frac{x}{a})\log(1+\frac{x^2}{a})} \end{cases}$	$x \neq 0$ is continuous functi	on at $x = 0$, then the value	of a is equal to
	$9(\log 4)^3, x$	= 0	-, -, -, -, -, -, -, -, -, -, -, -, -, -	1
	a) 3	b) 1	c) 2	d) 0
26.	f(x) = [x] + x in -1 <	$x \le 2$ is		
	a) Continuous at $x = 0$	şii		
	b) Discontinuous at x = 3c) Not differentiable at x			
	d) All the above	- 2,0		
27.	E. C.	e $[x]$ the greatest integer fu	nction is. Then the number	of points in the interval (1,
	2), where function is disc	continuous is		
101211201	a) 4	b) 5	c) 6	d) 7
	If $y = \cos^{-1}\cos(x - f(x))$			
	$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ -1, & \text{if } x < 0 \text{ Th} \end{cases}$	en, $(dy/dx) x = \frac{5\pi}{4}$ is equal	Lto	
	$\begin{cases} 1, t \in \mathbb{R} \\ 0, if x = 0 \end{cases}$	$cii, (uy/ux)x = \frac{1}{4}$ is equal	1.00	
	a) -1		b) 1	
	c) 0	months and allowed and south conformations	d) Cannot be determined	
29.		$f(y)$ and $f(x) = x^2 g(x)$ for	all $x, y \in R$, where $g(x)$ is o	ontinuous function. Then,
	f'(x) is equal to	b) a(0)	a(0) + a'(x)	d) 0
30.	Late for ation f(x) hade	b) $g(0)$ fined by $f(x) = \begin{cases} x, & x \in \mathbb{R} \\ 0, & x \in \mathbb{R} \end{cases}$	$Q = \sum_{x \in \mathcal{X}} g(x) + g(x)$	u) o
		A SECOND SECOND	$-Q^{1 \text{ nen, } f(x) \text{ is}}$	
	a) Everywhere continuous	IS		
	b) Nowhere continuousc) Continuous only at sor	ne points		
	d) Discontinuous only at			
31.	The function $f(x) = \begin{cases} 1 - x \\ -x \end{cases}$	$2x + 3x^2 - 4x^3 + \dots \text{ to } \infty,$ $1, \qquad x = -$	$x \neq -1$ is	
	a) Continuous and deriva		1	
	b) Neither continuous no			
	c) Continuous but not de			
	d) None of these			
32.	$f(x) = \begin{cases} 2a - x & \text{in } -a < \\ 3x - 2a & \text{in } a \end{cases}$	$x < a \le x$. Then, which of the for	ollowing is true?	
	a) $f(x)$ is discontinuous		b) $f(x)$ is not differential	le at $x = a$
	c) $f(x)$ is differentiable a	at $x \ge a$	d) $f(x)$ is continuous at a	ll x < a
33.			(x) where $g(x)$ is continuous	
24	a) $f(x)g(0)$	b) $2f(x)g(0)$	c) 2g(0)	d) None of these
34.	a) $f(x) = [x \sin \pi x]$, then	which of the following is i $x = 0$	ncorrect?	
	b) $f(x)$ is continuous in (
	c) $f(x)$ is differentiable a	· · · · · · · · · · · · · · · · · · ·		
	d) $f(x)$ is differentiable i	n (-1, 1)		

35. If $f(x) = \begin{cases} 1, x < 0 \\ 1 + \sin x, 0 \le x \le \frac{\pi}{2} \end{cases}$ then derivative of f(x) at x = 0

- d) Does not exist
- 36. If the derivative of the function f(x) is everywhere continuous and is given by

 $f(x) = \begin{cases} bx^2 + ax + 4; & x \ge -1 \\ ax^2 + b; & x < -1 \end{cases}$, then

- a) a = 2, b = -3
- b) a = 3, b = 2 c) a = -2, b = -3 d) a = -3, b = -2

If $f(x) = \begin{cases} \frac{x \log \cos x}{\log(1+x^2)}, & x \neq 0\\ 0, & x = 0 \end{cases}$, then

- a) f(x) is not continuous at x = 0
- b) f(x) is not continuous and differentiable at x = 0
- c) f(x) is not continuous at x = 0 but not differentiable at x = 0
- d) None of these

If the function $f(x) = \begin{cases} Ax - B, & x \le 1 \\ 3x, & 1 < x < 2 \text{ be continuous at } x = 1 \text{ and discontinuous at } x = 2, \text{ then } \\ Bx^2 - A, & x \ge 2 \end{cases}$

- a) $A = 3 + B, B \neq 3$
 - b) A = 3 + B, B = 3 c) A = 3 + B
- d) None of these

39. If $f(x) = \begin{cases} |x - 4|, \text{ for } x \ge 1\\ (x^3/2) - x^2 + 3x + (1/2), \text{ for } x < 1 \end{cases}$, then

- a) f(x) is continuous at x = 1 and x = 4
- b) f(x) is differentiable at x = 4
- c) f(x) is continuous and differentiable at x = 1
- d) f(x) is not continuous at x = 1
- 40. The function f(x) = a[x+1] + b[x-1], where [x] is the greatest integer function, is continuous at x = 1,

- d) None of these

41. Let $f(x) = \begin{cases} 5^{1/x}, & x < 0 \\ \lambda[x], & x \ge 0 \end{cases}$ and $\lambda \in R$, then at x = 0

a) f is discontinuous

- b) f is continuous only, if $\lambda = 0$
- c) f is continuous only, whatever λ may be
- d) None of the above
- 42. If for a continuous function f, f(0) = f(1) = 0, f'(1) = 2 and $y(x) = f(e^x)e^{f(x)}$, then y'(0) is equal to

d) None of these

43. If $f(x) = \begin{cases} ax^2 - b, |x| < 1 \\ \frac{1}{|x|}, |x| \ge 1 \end{cases}$ is differentiable at x = 1, then

a) $a = \frac{1}{2}, b = -\frac{1}{2}$ b) $a = -\frac{1}{2}, b = -\frac{3}{2}$ c) $a = b = \frac{1}{2}$

- d) $a = b = -\frac{1}{2}$
- 44. Let $f(x) = \frac{\sin 4 \pi [x]}{1 + |x|^2}$, where [x] is the greatest integer less than or equal to x, then
 - a) f(x) is not differentiable at some points
 - b) f'(x) exists but is different from zero
 - c) f'(x) = 0 for all x
 - d) f'(x) = 0 but f is not a constant function
- 45. The value of k which makes $f(x) = \begin{cases} \sin(1/k), & x \neq 0 \\ k, & x = 0 \end{cases}$ continuous at x = 0 is
 - a) 8

- d) None of these
- 46. The function $f(x) = \max[(1-x), (1+x), 2], x \in (-\infty, \infty)$ is
 - a) Continuous at all points

- b) Differentiable at all points
- Differentiable at all points except at x = 1 and x = d) None of the above -1

- 47. Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) f(y)$ for all x, y and f(e) = 1. Then,
 - a) f(x) is bounded
- b) $f\left(\frac{1}{r}\right) \to 0$ as $x \to 0$ c) $xf(x) \to 1$ as $x \to 0$ d) $f(x) = \ln x$
- 48. Suppose a function f(x) satisfies the following conditions for all x and y: (i) f(x + y) = f(x)f(y) (ii) $f(x) = 1 + x g(x) \log a$, where a > 1 and $\lim_{x \to 0} g(x) = 1$. Then, f'(x) is equal to
 - a) $\log a$

- d) None of these
- 49. Let g(x) be the inverse of the function f(x) and $f'(x) = \frac{1}{1+x^3}$. Then, g'(x) is equal to
 - a) $\frac{1}{1 + (g(x))^3}$
- b) $\frac{1}{1 + (f(x))^3}$ c) $1 + (g(x))^3$ d) $1 + (f(x))^3$

- 50. If $f(x) = |x^2 4x + 3|$, then
 - a) f'(1) = -1 and f'(3) = 1
 - b) f'(1) = -1 and f'(3) does not exist
 - c) f'(1) = -1 does not exist and f'(3) = 1
 - d) Both f'(1) and f'(3) do not exist
- 51. The points of discontinuity of $\tan x$ are
 - a) $n\pi, n \in I$
- b) $2n\pi, n \in I$
- c) $(2n+1)\frac{\pi}{2}, n \in I$
- d) None of these
- 52. Let f(x) = ||x| 1|, then points where f(x) is not differentiable, is/(are)

d) 1

- 53. $f(x) = \begin{cases} 2x, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$ Then $a) \begin{cases} f(x) \text{ is continuous at} \\ x = 0 \end{cases}$ b) $f(|x|) \text{ is continuous at} \\ x = 0 \end{cases}$ c) f(x) is discontinuous atd None of the above x = 0
- 54. Let $f(x) = [x] + \sqrt{x [x]}$, where [x] denotes the greatest integer function. Then,
 - a) f(x) is continuous on R^+
 - b) f(x) is continuous on R
 - c) f(x) is continuous on R-Z
 - d) None of these
- 55. The function $f(x) = \frac{1-\sin x + \cos x}{1+\sin x + \cos x}$ is not defined at $x = \pi$. The value of $f(\pi)$, so that f(x) is continuous at $x = \pi$.
 - a) -1/2

- d) 1
- 56. Let $f(x) = \begin{cases} (x-1)\sin\frac{1}{x-1}, & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$. Then, which one of the following is true?
 - a) f is differentiable at x = 1 but not at x = 0
 - b) f is neither differentiable at x = 0 nor at x = 1
 - c) f is differentiable at x = 0 and at x = 1
 - d) f is differentiable at x = 0 but not at x = 1
- If $f(x) = \begin{cases} mx + 1, & x \le \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, then
 - a) m = 1, n = 0 b) $m = \frac{n\pi}{2} + 1$ c) $n = \frac{m\pi}{2}$
- d) $m = n = \frac{\pi}{2}$
- 58. Let f be differentiable for all x. If f(1) = -2 and $f'(x) \ge 2$ for $x \in [1, 6]$, then
- b) f(6) < 5

- 59. If $\lim_{x \to a^+} f(x) = l = \lim_{x \to a^-} g(x)$ and $\lim_{x \to a^-} f(x) = m \lim_{x \to a^+} g(x)$, then the function f(x) g(x)
 - a) Is not continuous at x = a
 - b) Has a limit when $x \to a$ and it is equal to lm

c)	Is	continuous at $x =$	a
**	-		

- d) Has a limit when $x \to a$ but it is not equal to lm
- 60. Let f(x) be a function satisfying f(x + y) = f(x)f(y) for all $x, y \in R$ and f(x) = 1 + x g(x) where $\lim_{x \to 0} g(x) = 1$. Then, f'(x) is equal to

a)
$$g'(x)$$

b)
$$g(x)$$

c)
$$f(x)$$

- d) None of these
- 61. The set of points where the function f(x) = x|x| is differentiable is

a)
$$(-\infty, \infty)$$

b)
$$(-\infty,0) \cup (0,\infty)$$

c)
$$(0, \infty)$$

$$d)[0,\infty)$$

- 62. If f(x + y) = f(x)f(y) for all real x and y, f(6) = 3 and f'(0) = 10, then f'(6) is
 - a) 30

b) 13

c) 10

- d) (
- 63. If $f(x) = |x a| \phi(x)$, where $\phi(x)$ is continuous function, then

a)
$$f'(a^+) = \phi(a)$$

$$b) f'(a^-) = \phi(a)$$

c)
$$f'(a^+) = f'(a^-)$$

64. If
$$f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0, \text{ then } f(x) \text{ is } \\ 0, & x = 0 \end{cases}$$

- a) Continuous as well as differentiable for all x
- b) Continuous for all x but not differentiable at x = 0
- c) Neither differentiable nor continuous at x = 0
- d) Discontinuous everywhere

65. If
$$f(x) = \begin{cases} 3, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$$
, then

- a) Both f(x) and f(|x|) are differentiable at x = 0
- b) f(x) is differentiable but f(|x|) is not differentiable at x = 0
- c) f(|x|) is differentiable but f(x) is not differentiable at x = 0
- d) Both f(x) and f(|x|) are not differentiable at x = 0
- 66. If $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists finitely, then

a)
$$\lim_{x \to c} f(x) = f(c)$$

b)
$$\lim_{x \to c} f'(x) = f'(c)$$

- c) $\lim_{x \to c} f(x)$ does not exist
- d) $\lim_{x\to c} f(x)$ may or may not exist
- 67. The number of points at which the function $f(x) = |x 0.5| + |x 1| + \tan x$ does not have a derivative in the interval (0, 2), is

8. If
$$f(x) = \begin{cases} \log_{(1-3x)}(1+3x), & \text{for } x \neq 0 \\ k, & \text{for } x = 0 \end{cases}$$
 is continuous at $x = 0$, then k is equal to

- 69. Let f(x) be a function differentiable at x = c. Then, $\lim_{x \to c} f(x)$ equals
 - a) f'(c)
- b) *f* "(*c*)
- c) $\frac{1}{f(c)}$
- d) None of these
- 70. If $f(x) = ae^{|x|} + b|x|^2$; $a, b \in R$ and f(x) is differentiable at x = 0. Then a and b are
 - a) $a = 0, b \in R$
- b) a = 1, b = 2
- c) $b = 0, a \in R$
- d) a = 4, b = 5

- 71. Let f(x) = (x + |x|)|x|. The, for all x
 - a) f and f' are continuous
 - b) f is differentiable for some x
 - c) f' is not continuous
 - d) f'' is continuous
- 72. If $f(x) = \begin{cases} \frac{x-1}{2x^2 7x + 5}, & \text{for } x \neq 1 \\ -\frac{1}{3}, & \text{for } x = 1 \end{cases}$, then f'(1) is equal to

	a) $-\frac{1}{9}$,	c) $-\frac{1}{3}$	d) $\frac{1}{3}$						
73.	Suppose $f(x)$ is differ	rentiable at $x = 1$ and	$\lim_{h \to 0} \frac{1}{h} f(1+h) = 5, \text{ then } f'($	1) equals						
	a) 6	b) 5	c) 4	d) 3						
74.	If $f: R \to R$ is defined	by	0000 F 3 (ye)+00	5.5. * * 1.5.2*						
	$f(x) = \begin{cases} \frac{x+2}{x^2+3x+2}, & \text{if } x \\ -1, & \text{o}, \end{cases}$	$x \in R - \{-1, -2\}$ if $x = -2$, ther if $x = -1$	f is continuous on the set							
	a) R	b) $R - \{-2\}$	c) $R - \{-1\}$	d) $R - (-1, -2)$						
75.	Let $f(x) = \frac{(e^x - 1)^2}{\sin(\frac{x}{a})\log(1-x)}$	$\frac{x}{x}$ for $x \neq 0$ and $f(0)$	= 12. If f is continuous at x	d) $R - (-1, -2)$ = 0, then the value of a is equal to						
	a) 1	b) -1	c) 2	d) 3						
76.	If a function $f(x)$ is gi	iven by $f(x) = \frac{x}{1+x} + \frac{x}{2}$	$\frac{x}{(x+1)(2x+1)} + \frac{x}{(2x+1)(3x+1)} + \cdots$	$\cdot \infty$ then at $x = 0, f(x)$						
	a) Has no limit	1+1	(22+1)(22+1)							
	b) Is not continuous									
	c) Is continuous but r	ot differentiable								
	d) Is differentiable									
77.	If $f(x)$ is continuous	function and $g(x)$ be of	discontinuous, then							
	a) $f(x) + g(x)$ must $ $									
	b) $f(x) + g(x)$ must b									
	c) $f(x) + g(x)$ for all	l x								
	d) None of these									
78.				$y \in R$ and $f(x) \neq 0$ for all $x \in R$. If						
	f(x) is differentiable	at $x = 0$ and $f'(0) = 2$	2, then $f'(x)$ equals							
	a) $f(x)$	b) $-f(x)$	c) $2f(x)$	d) None of these						
79.	Consider $f(x) = \begin{cases} \frac{x^2}{ x }, \\ 0. \end{cases}$	$x \neq 0$ $x = 0$								
	a) $f(x)$ is discontinuo	ous everywhere								
	b) $f(x)$ is continuous									
	c) $f'(x)$ exists in (-1)	, 1)								
	d) $f'(x)$ exists in $(-2, -2)$, 2)								
80.	If $f(x)$ is continuous a	at x = 0 and f(0) = 2	, then							
	$\lim_{x\to 0} \frac{\int_0^x f(u)du}{x}$ is									
	a) 0	b) 2	c) f(2)	d) None of these						
81.		(y) for all $x, y \in R$. Su		0) = 11 then, $f'(3)$ is equal to						
五五	a) 22	b) 44	c) 28	d) None of these						
82.	If $f(x) = \begin{cases} x - 5, \\ 4x^2 - 9, \\ 3x + 4, \end{cases}$	for $x \le 1$ for $1 < x < 2$, then f for $x \ge 2$	f'(2 ⁺) is equal to							
	a) 0	b) 2	c) 3	d) 4						
83.	$f(x) = \sin x $. Then f	f(x) is not differential	ole at	_						
	a) $x = 0$ only	b) All x	c) Multiples of π	d) Multiples of $\frac{\pi}{2}$						
84.	If $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} (\log x)$									
	a) Everywhere continuous but not differentiable									

c) Nowhere continuous

d) None of these

- 85. The function $f(x) = [x] \cos \left[\frac{2x-1}{2}\right] \pi$ where [.] denotes the greatest integer function, is discontinuous at
 - a) All x

b) No x

c) All integer points

- d) x which is not an integer
- The function $f(x) = \begin{cases} 1, & |x| \ge 1\\ \frac{1}{n^2}, \frac{1}{n} < |x| < \frac{1}{n-1}, n = 2, 3, \dots \\ 0 & x = 0 \end{cases}$
 - a) Is discontinuous at finitely many points
 - b) Is continuous everywhere
 - c) Is discontinuous only at $x = \pm \frac{1}{n}$, $n \in \mathbb{Z} \{0\}$ and x = 0
 - d) None of these
- 87. Let f is a real-valued differentiable function satisfying $|f(x) f(y)| \le (x y)^2$, $x, y \in R$ and f(0) = 0, then f(1) equals
 - a) 1

b) 2

- d) -1
- 88. Let $f(x) = [2x^3 5]$, [] denotes the greatest integer function. Then number of points (1, 2) where the function is discontinuous, is

c) 10

- d) 3
- 89. $\ln[1,3]$ the function $[x^2+1]$, [x] denoting the greatest integer function, is continuous
 - a) For all x
 - b) For all x except at four points
 - c) For all except at seven points
 - d) For all except at eight-points
- 90. If $f(x) = |\log_{10} x|$, then at x = 1
 - a) f(x) is continuous and $f'(1^+) = \log_{10} e$, $f'(1^-) = -\log_{10} e$
 - b) f(x) is continuous and $f'(1^+) = \log_{10} e$, $f'(1^-) = \log_{10} e$
 - c) f(x) is continuous and $f'(1^-) = \log_{10} e$, $f'(1^+) = -\log_{10} e$
 - d) None of these
- 91. The function $f(x) = |\cos x|$ is
 - a) Everywhere continuous and differentiable
 - b) Everywhere continuous and but not differentiable at $(2n + 1) \pi/2$, $n \in \mathbb{Z}$
 - c) Neither continuous nor differentiable at $(2n + 1) \pi/2$, $n \in \mathbb{Z}$
 - d) None of these
- Let $f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, x < 4\\ a+b, & x=4\\ \frac{x-4}{|x-4|} + b, x > 4 \end{cases}$ 92.

Then, f(x) is continuous at x = 4 when

- a) a = 0, b = 0

- c) a = -1, b = 1 d) a = 1, b = -1
- If $f(x) = \begin{cases} \frac{2^x 1}{\sqrt{1 + x} 1}, -1 \le x < \infty, & x \ne 0 \\ k, & x = 0 \end{cases}$ is continuous everywhere, then k is equal to
 - a) $\frac{1}{2}\log_e 2$
- c) log_e 8
- d) log_e 2
- 94. The function $f(x) = \begin{cases} x^n \sin(\frac{1}{x}), x \neq 0 \\ 0, x = 0 \end{cases}$ is continuous and differentiable at x = 0, if
- c) $n \in (1, \infty)$
- d) $n \in (-\infty, 0)$

- a) $n \in (0,1]$ b) $n \in [1,\infty)$ The function $f(x) = \begin{cases} \frac{e^{1/x} 1}{e^{1/x} + 1}, & x \neq 0 \\ 0, & x = 0 \end{cases}$
 - a) Is continuous at x = 0
 - b) Is not continuous at x = 0

- c) Is not continuous at x = 0, but can be made continuous x = 0
- d) None of these
- 96. A function $f(x) = \begin{cases} 1+x, & x \le 2 \\ 5-x, & x > 2 \end{cases}$ is
 - a) Not continuous at x =

- b) Differenti8able at x = 2
- c) Continuous but not differentiable at = 2
- d) None of the above
- 97. Let f(x + y) = f(x)f(y) for all $x, y \in R$. If f'(1) = 2 and f(4) = 4, then f'(4) equal to

- 98. Let f(x) = [x] and $g(x) = \begin{cases} 0, & x \in \mathbb{Z} \\ x^2, & x \in \mathbb{R} \mathbb{Z} \end{cases}$ Then, which one of the following is incorrect?
 - a) $\lim_{x \to 1} g(x)$ exists, but g(x) is not continuous at x = 1
 - b) $\lim_{x \to 1} f(x)$ does not exist and f(x) is not continuous at x = 1
 - c) gof is continuous for all x
 - d) fog is continuous for all x
- If $f(x) = \begin{cases} x, & \text{for } 0 < x < 1\\ 2 x, & \text{for } 1 \le x < 2.\text{Then, } f'(1) \text{ is equal to}\\ x (1/2)x^2, & \text{for } x = 2 \end{cases}$

c) 0

d) None of these

- 100. The function $f(x) = |x| + \frac{|x|}{x}$ is
 - a) Discontinuous at origin because |x| is discontinuous there
 - b) Continuous at origin
 - c) Discontinuous at origin because both |x| and $\frac{|x|}{x}$ are discontinuous there
 - d) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there
- 101. f(x) = |x 3| is ... at x = 3
 - a) Continuous and not differentiable
- b) Continuous and differentiable
- c) Discontinuous and not differentiable
- d) Discontinuous and differentiable
- 102. At $x = \frac{3}{2}$ the function $f(x) = \frac{|2x-3|}{2x-3}$ is
 - a) Continuous
- b) Discontinuous
- c) Differentiable
- d) Non-zero

- 103. The following functions are differentiable on (-1,2)
 - a) $\int_{0}^{2x} (\log t)^2 dt$ b) $\int_{0}^{2x} \frac{\sin t}{t} dt$
- c) $\int_{1}^{2x} \frac{1-t+t^2}{1+t+t^2} dt$
- d) None of these

- 104. Let $f(x) = \frac{1-\tan x}{4x-\pi}$, $x \neq \frac{\pi}{4}$, $x \in \left[0, \frac{\pi}{2}\right]$. If f(x) is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is a) 1 b) 1/2 c) -1/2105. If $f(x) = \begin{cases} \frac{1-\cos x}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0, then the value of k is

d) $-\frac{1}{2}$

- 106. Let f(x) = |x| + |x 1|, then
 - a) f(x) is continuous at x = 0, as well as at x = 1
 - b) f(x) is continuous at x = 0, but not at x = 1
 - c) f(x) is continuous at x = 1, but not at x = 0
 - d) None of these
- 107. The function f(x) is defined as $f(x) = \frac{2x \sin^{-1} x}{2x + \tan^{-1} x}$, if $x \neq 0$. The value of f to be assigned at x = 0 so that the function is continuous there, is
 - a) $-\frac{1}{3}$

108. Let f(x) be an odd function. Then f'(x)

- a) Is an even function
- b) Is an odd function
- c) May be even or odd
- d) None of these

If $f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & \text{for } x \neq 1 \\ -\frac{1}{3}, & \text{for } x = 1 \end{cases}$, then f'(1) is equal to a) $-\frac{1}{9}$ b) $-\frac{2}{9}$ 109.

- c) -13
- d) 1/3

110. If $f: R \to R$ given by

$$f(x) = \begin{cases} 2\cos x, & \text{if } x \le -\frac{\pi}{2} \\ a + \sin x + b, & \text{if } -\frac{\pi}{2} < x < \frac{\pi}{2} \text{ is a continuous} \\ 1 + \cos^2 x, & \text{if } x \ge \frac{\pi}{2} \end{cases}$$

Function on R, then (a, b) is equal to

- a) (1/2, 1/2)
- b) (0, -1)
- c) (0, 2)
- d)(1,0)

111. If f(x + y) = f(x)f(y) for all $x, y \in R$, f(5) = 2, f'(0) = 3. Then f'(5) equals

a) 6

d) None of these

112. Let f(x) be a function satisfying f(x + y) = f(x) + f(y) and f(x) = x g(x) for all $x, y \in R$, where g(x) is continuous. Then,

- d) None of these

a) f'(x) = g'(x) b) f'(x) = g(x) c) f'(x) = g(0) 113. If $f(x) = \sqrt{x + 2\sqrt{2x - 4}} + \sqrt{x - 2\sqrt{2x - 4}}$, then f(x) is differentiable on

- c) $[2, \infty)$
- d) None of these

a) $(-\infty, \infty)$ b) $[2, \infty) - \{4\}$ 114. If $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$, then

- a) f and f' are continuous at x = 0
- b) f is derivable at x = 0 and f' is continuous at x = 0
- c) f is derivable at x = 0 and f' is not continuous at x = 0
- d) f' is derivable at x = 0

If a function f(x) is defined as $f(x) = \begin{cases} \frac{x}{\sqrt{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ then

- a) f(x) is continuous at x = 0 but not differentiable at x = 0
- b) f(x) is continuous as well as differentiable at x = 0
- c) f(x) is discontinuous at x = 0
- d) None of these

116. If $f(x) = [\sqrt{2} \sin x]$, where [x] represents the greatest integer function, then

- a) f(x) is periodic
- b) Maximum value of f(x) is 1 in the interval $[-2\pi, 2\pi]$
- c) f(x) is discontinuous at $x = \frac{n\pi}{2} + \frac{\pi}{4}$, $n \in \mathbb{Z}$
- d) f(x) is differentiable at $x = n \pi, n \in Z$

117. $\lim_{x \to 0} [(1+3x)^{1/x}] = k$, then for continuity at x = 0, k is

c) e^3

d) e^{-3}

a) 3 b) -3
118. Let $f(x) = \begin{cases} \int_0^x \{5 + |1 - t|\} dt, & \text{if } x > 2 \\ 5x + 1, & \text{if } x \le 2 \end{cases}$

- a) f(x) is continuous at x = 2
- b) f(x) is continuous but not differentiable at x = 2
- c) f(x) is everywhere differentiable
- d) The right derivative of f(x) at x = 2 does not exist

119. Let
$$f(x) = \begin{cases} \frac{1}{|x|} & \text{for } |x| \ge 1\\ ax^2 + b & \text{for } |x| < 1 \end{cases}$$

If f(x) is continuous and differentiable at any point, then

a)
$$a = \frac{1}{2}, b = -\frac{3}{2}$$
 b) $a = -\frac{1}{2}, b = \frac{3}{2}$ c) $a = 1, b = -1$

b)
$$a = -\frac{1}{2}$$
, $b = \frac{3}{2}$

c)
$$a = 1, b = -1$$

d) None of these

120. If function $f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 1 - x, & \text{if } x \text{ is irrational'} \end{cases}$ then the number of points at which f(x) is continuous, is

d) None of these

121. The function $f(x) = e^{-|x|}$ is

Continuous everywhere but not differentiable at x = 0 Continuous and differentiable everywhere

c) Not continuous at x = 0

d) None of the above

122. The value of f(0), so that the function

$$f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$

Becomes continuous for all x, is given by

a)
$$a^{3/2}$$

b)
$$a^{1/2}$$

c)
$$-a^{1/2}$$

d)
$$-a^{3/2}$$

123. The value of k for which the function

$$f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & x \neq 0 \\ k & x = 0 \end{cases}$$
 is continuous at $a = 0$, is a) $k = 0$ b) $k = 1$

a)
$$k = 0$$

b)
$$k = 1$$

c)
$$k = -1$$

d) None of these

124. The number of points at which the function $f(x) = (|x-1| + |x-2| + \cos x)$ where $x \in [0,4]$ is not continuous, is

125. If $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0, then the value of k is

126. Let f(x) be twice differentiable function such that f''(x) = -f(x) and f'(x) = g(x), $h(x) = \{f(x)\}^2 + f(x)\}$ ${g(x)}^2$. If h(5) = 11, then h(10) is equal to

d) None of these

127. if $f(x) = |x|^3$, then f'(0) equals

$$d) - 1/2$$

128. Let function $f(x) = \sin^{-1}(\cos x)$, is

- a) Discontinuous at x = 0
- b) Continuous at x = 0
- c) Differentiable at x = 0
- d) None of these

Let $f(x) = \begin{cases} \frac{x^4 - 5x^2 + 4}{|(x - 1)(x - 2)|}, & x \neq 1, 2\\ 6, & x = 10\\ 12, & x = 2 \end{cases}$ Then, f(x) is continuous on the set

b)
$$R - \{1\}$$

c)
$$R - \{2\}$$

d)
$$R - \{1, 2\}$$

a) R b) $R - \{1\}$ c) 130. The set of points, where $f(x) = \frac{x}{1+|x|}$ is differentiable, is

a)
$$(-\infty, -1) \cup (-1, \infty)$$
 b) $(-\infty, \infty)$

c)
$$(0, \infty)$$

d)
$$(-\infty,0) \cup (0,\infty)$$

131. Given f(0) = 0 and $f(x) = \frac{1}{(1 - e^{-1/x})}$ for $x \neq 0$. Then only one of the folloowing statements on f(x) is true.

That id f(x), is

- a) Continuous at x = 0
- b) Not continuous at x = 0

c) Both continuo	us and differentiable at $x = 0$	0	
d) Not defined at			
		a'(a) = 2, a(a) = h	nd fog = I (identify function).
Then, $f'(b)$ is equ			, -8 - (,,
a) 1/2	b) 2	c) 2/3	d) None of these
Let $f(x) = \begin{cases} 5x \\ k \end{cases}$	$x \neq 0$, if $f(x)$ is continuou $x = 0$	as at x = 0, then k is equa	l to
	500 S	c) 1	d) 0
a) $\frac{\pi}{5}$	b) $\frac{5}{\pi}$	c) 1	4) 0
134. The number of di	iscontinuities of the greatest	integer function $f(x) = 1$	$[x], x \in \left(-\frac{7}{2}, 100\right)$ is equal to
a) 104	b) 100	c) 102	d) 103
	re-color to a construct		To the second se
	$f(x) = \frac{e^{1/x} - 1}{e^{1/x} + 1}, x = 0$, which o	f the following is correct?	
a) $\lim_{x\to 0} f(x)$ does	not exist		
b) $\lim_{x \to 0} f(x) = 1$			
c) $\lim_{x \to \infty} f(x)$ exists	s but $f(x)$ is not continuous a	at $x = 0$	
d) $f(x)$ is continu			
	$\frac{x^4}{x^4} + \frac{x^4}{(1+x^4)^2} + \cdots$ to ∞ then a	t 0 .f() i-	
***	x (11x)	$\mathbf{t} x = 0, f(x)$ is	
맛이 빠른 아이는 얼마나 아이나 아이를 가게 되었다.	ıt not differentiable		
b) Differentiable			
c) Continuous			
d) None of these $(1+r)$	0 < r < 2		
137. If $f(x) = \begin{cases} 1 & x \\ 3 - x \end{cases}$	$0 \le x \le 2$ 2 < $x \le 3$ then the set of po	oints of discontinuity of g	f(x) = f(x), is
a) {1, 2}	b) {0, 1, 2}	c) {0, 1}	d) None of these
138. Let $g(x)$ be the in	nverse of an invertible functi	on $f(x)$ which is different	tiable at $x = c$, then $g'(f(c))$ equals
a) $f'(c)$	b) $\frac{1}{f'(c)}$	c) f(c)	d) None of these
	, (-)	(5 5) 30(5	
139. If $f(x) = \int x^p \cos x$	$(\frac{1}{x}), x \neq 0$ is differentiable $x = 0$	at $r = 0$ then	
(x) = (0,	x = 0	acx = 0, then	
a) $p < 0$	b) 0	c) $p = 1$	d) $p > 1$
140. At $x = 0$, the fund			
[1. 바람이 보다 보다 다른 사람이 보다	it not differentiable		and differentiable
c) Discontinuous	and not differentiable	d) Continuous an	
141. If $f(x) = \begin{cases} (x-2)^{-1} & \text{if } f(x) = \frac{1}{2} \end{cases}$	$(2)^{2} \sin\left(\frac{1}{x-2}\right) - x-1 , \ x \neq 2$ $-1, \qquad x = 2$ $b) R - \{1, 2\}$ $x = 0 \text{ so that function } f(x) = 0$	then the set of points wh	here $f(x)$ is differentiable, is
(.	-1, x = 2		
a) <i>R</i>	b) $R - \{1, 2\}$	c) R - {1}	d) $R - \{2\}$
142. The value of f at	x = 0 so that function $f(x) =$	$=\frac{2^{x}-2^{-x}}{x}$, $x \neq 0$ is continu	ous at $x = 0$, is
a) 0	b) log 2	c) 4	d) log 4
$143. \text{ If } f(x) = \log_e x $, then		
a) $f'(1^+) = 1, f'$			
b) $f'(1^-) = -1$,			
c) $f'(1) = 1, f'(1)$			
d) $f'(1) = -1, f'$	A STATE OF THE STA		
			$f(x) = x + x + y = x$ for all $x, y \in R$. If $g(x)$ is a
	ion such that $g(0) = k$, then	A 270753	d) Nama of these
a) <i>k</i>	b) <i>kx</i>	c) $kg(x)$	d) None of these

```
145. The function f(x) = |x| + |x - 1|, is
    a) Continuous at x = 1, but not differentiable
    b) Both continuous and differentiable at x = 1
    c) Not continuous at x = 1
    d) None of these
```

The set of points of differentiability of the function $f(x) = \begin{cases} \frac{\sqrt{x+1}-1}{x}, & \text{for } x \neq 0 \\ 0, & \text{for } x = 0 \end{cases}$ is

b) [0, ∞]

c) $(-\infty,0)$

147. Given that f(x) is a differentiable function of x and that f(x). f(y) = f(x) + f(y) + f(xy) - 2 and that f(2) = 5. Then, f(3) is equal to

c) 15

d) None of these

148. If $f(x) = \frac{1}{2}x - 1$, then on the interval $[0, \pi]$,

a) tan[f(x)] and $\frac{1}{f(x)}$ are both continuous

b) tan[f(x)] and $\frac{1}{f(x)}$ are both discontinuous

c) tan[f(x)] and $f^{-1}(x)$ are both continuous d) tan[f(x)] s continuous but $\frac{1}{f(x)}$ is not

149. If $f(x) = (x + 1)^{\cot x}$ be continuous at = 0, then f(0) is equal to

a) 0

d) None of these

150. Let $f(x) = \begin{cases} \frac{\tan x - \cot x}{x - \frac{\pi}{4}}, & x \neq \frac{\pi}{4} \\ a, & x = \frac{\pi}{4} \end{cases}$ the value of a so that f(x) is continuous at $x = \frac{\pi}{4}$ is

d) 1

151. If $f(x) = \int_{-1}^{x} |t| dt, x \ge -1$, then

a) f and f' are continuous for x + 1 > 0

b) f is continuous but f' is not so for x + 1 > 0

c) f and f' are continuous at x = 0

d) f is continuous at x = 0 but f' is not so

152. The set of points of discontinuity of the function

$$f(x) = \lim_{n \to \infty} \frac{x^{-n} - x^n}{x^{-n} + x^n}, n \in Z \text{ is}$$

b) $\{-1\}$

c) $\{-1,1\}$

d) None of these

153. The number of points of discontinuity of the function

$$f(x) = \frac{1}{\log|x|}, \text{ is}$$

c) 2

d) 1

154. $f(x) = \begin{cases} \frac{\sin 3x}{\sin x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous, if k is

c) -3

d) -1

155. For the function $f(x) = \frac{\log_e(1+x) + \log_e(1-x)}{x}$ to be continuous at = 0, the value of f(0) is

c) -2

d) 2

Let $f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & x < 4\\ a+b, & x = 4\\ \frac{x-4}{|x-4|} + b, & x > 4 \end{cases}$ 156.

Then, f(x) is continuous at x = 4, when

a) a = 0, b = 0

b) a = 1, b = 1

c) a = -1, b = 1 d) a = 1, b = -1

157. If
$$f(x) \begin{cases} \frac{[x]-1}{x-1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$$
 then at $x = 1, f(x)$ is

- a) Continuous and differentiable
- b) Differentiable but not continuous
- c) Continuous but not differentiable
- d) Neither continuous nor differentiable

158. If
$$f(x) = \begin{cases} \frac{1-\sqrt{2}\sin x}{\pi-4x}, & \text{if } x \neq \frac{\pi}{4} \\ a, & \text{if } x = \frac{\pi}{4} \end{cases}$$
 is continuous at $\frac{\pi}{4}$, then a is equal to a) 4 b) 2 c) 1

a) 4 b) 2 c) 1 d) 1/4
159. If the function
$$f: R \to R$$
 given by $f(x) = \begin{cases} x + a, & \text{if } x \le 1 \\ 3 - x^2, & \text{if } x > 1 \end{cases}$ is continuous at $x = 1$, then a is equal to

160. If
$$f: R \to R$$
 is defined by

$$f(x) = \begin{cases} \frac{\cos 3x - \cos x}{x^2}, & \text{for } x \neq 0 \\ \lambda, & \text{for } x = 0 \end{cases}$$
 and if f is continuous at $x = 0$, then λ is equal to

a) -2

d) -8

For the function
$$f(x) = \begin{cases} \frac{x^3 - a^3}{x - a}, & x \neq a \\ b, & x = a \end{cases}$$
, if $f(x)$ is continuous at $x = a$, then b is equal to

162. If
$$y = f(x) = \frac{1}{u^2 + u - 1}$$
 where $u = \frac{1}{x - 1}$, then the function is discontinuous at $x = \frac{1}{x - 1}$

d)-2

163. If
$$f(x) = Min \{\tan x, \cot x\}$$
, then

- a) f(x) is not differentiable at $x = 0, \pi/4, 5\pi/4$
- b) f(x) is continuous at $x = 0, \pi/2, 3\pi/2$

c)
$$\int_{0}^{\pi/2} f(x)dx = \ln \sqrt{2}$$

d) f(x) is periodic with period $\frac{\pi}{2}$

164. If
$$f(x) = \{|x| - |x - 1|^2, \text{ then } f'(x) \text{ equals }$$

- a) 0 for all x
- b) $2\{|x|-|x-1|\}$

c)
$$\begin{cases} 0 \text{ for } x < 0 \text{ and for } x > 1 \\ 4(2x - 1)\text{ for } 0 < x < 1 \end{cases}$$
d)
$$\begin{cases} 0 \text{ for } x < 0 \\ 4(2x - 1)\text{ for } x > 0 \end{cases}$$

- 165. If $f(x) = (x x_0)\phi(x)$ and $\phi(x)$ is continuous at $x = x_0$, then $f'(x_0)$ is equal to
 - a) $\phi'(x_0)$
- b) $\phi(x_0)$
- c) $x_0 \phi(x_0)$
- d) None of these

166. The function defined by

The function defined by
$$f(x) = \begin{cases} \left(x^2 + e^{\frac{1}{2-x}}\right)^{-1} & x \neq 2 \\ k, & x = 2 \end{cases}$$
 is continuous from right at the point $x = 2$, then k is equal to

- d) None of these

a) 0 b)
$$\frac{1}{4}$$
 c) $-\frac{1}{2}$

167. If $f(x) = \begin{cases} \frac{1-\sin x}{(\pi-2x)^2} \cdot \frac{\log \sin x}{(\log 1+\pi^2-4\pi x+x^2)}, x \neq \frac{\pi}{2} \\ k, x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \pi/2$, then $k = \pi/2$ a) $-\frac{1}{16}$ b) $-\frac{1}{32}$ c) $-\frac{1}{64}$

If $f(x) = \begin{cases} \frac{\sin 5x}{x^2 + 2x}, & x \neq 0 \\ k + \frac{1}{2}, & x = 0 \end{cases}$ is continuous at x = 0, then the value of k is

Let $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Then, f(x) is continuous but not differentiable at x = 0, if a) $n \in (0, 1]$ b) $n \in [1, \infty)$ c) $n \in (-\infty, 0)$ d) n = 170. The function $f(x) = \begin{cases} |x - 3|, & \text{if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{if } x < 1 \end{cases}$ is

d) n=0

b) Continuous at x = 3, but not differentiable at x = 3

c) continuous and differentiable everywhere

d) continuous at x = 1, but not differentiable at x = 1

171. Let f(x) = |x| and $g(x) = |x^3|$, then

a) f(x) and g(x) Both are continuous at x = 0

b) f(x) and g(x) Both are differentiable at x = 0

c) f(x) is differentiable but g(x) is not differentiable at x = 0

d) f(x) and g(x) Both are not differentiable at x = 0

172. If $f(x) = \begin{cases} \frac{x}{c}, & x < 0 \\ c, & x = 0 \\ \frac{\sqrt{x + bx^2} - \sqrt{x}}{bx \sqrt{x}}, & x > 0 \end{cases}$ is continuous at x = 0, then

a)
$$a = -\frac{3}{2}$$
, $b = 0$, $c = \frac{1}{2}$

b)
$$a = -\frac{3}{2}$$
, $b = 1$, $c = -\frac{1}{2}$

c)
$$a = -\frac{3}{2}, b \in R - \{0\}, c = \frac{1}{2}$$

173. If $f(x) = \begin{cases} \frac{36^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0, then k equals

a) $16\sqrt{2} \log 2 \log 3$

b) $16\sqrt{2} \ln 6$

c) $16\sqrt{2} \ln 2 \ln 3$

d) None of these

174. Let [] denotes the greatest integer function and $f(x) = [\tan^2 x]$. Then,

a) $\lim_{x\to 0} f(x)$ does not exist

b) f(x) is continuous at x = 0

c) f(x) is not differentiable at x = 0

d) f(x) = 1

175. Let a function $f: R \to R$, where R is the set of real numbers satisfying the equation f(x + y) = f(x) + 1f(y), $\forall x$, y if f(x) is continuous at x = 0, then

a) f(x) is discontinuous, $\forall x \in R$

b) f(x) is continuous, $\forall x \in R$

c) f(x) is continuous for $x \in \{1, 2, 3, 4\}$

d) None of the above

176. Let $f(x) = \begin{cases} \sin x, & \text{for } x \ge 0 \\ 1 - \cos x, & \text{for } x \le 0 \end{cases}$ and $g(x) = e^x$. Then, $(g \circ f)'(0)$ is

d) None of these

a) 1 b) -1

177. The function $f(x) \begin{cases} (x+1)^{2-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, x \neq 0 \text{ is } \\ 0, x = 0 \end{cases}$

a) Continuous everywhere

b) Discontinuous at only one point

c) Discontinuous at exactly two points

d) None of these

178. If $f(x) = \begin{cases} \frac{\log(1+ax) - \log(1-bx)}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ and f(x) is continuous at x = 0, then the value of k is a) a - b b) a + b c) $\log a + \log b$ d) None of the 179. The value of f(0), so that the function $f(x) = \frac{(27 - 2x)^{1/3} - 3}{9 - 3(243 + 5x)^{1/5}} (x \neq 0)$ is continuous is given by d) None of these

180. The function $f: R/\{0\} \to R$ given by

$$f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}$$

Can be made continuous at x = 0 by defining f(0) as function

d) 1

181. Which one of the following is not true always?

a) If f(x) is not continuous at x = a, then it is not differentiable at x = a

b) If f(x) is continuous at x = a, then it is differentiable at x = a

c) If f(x) and g(x) are differentiable at x = a, then f(x) + g(x) is also differentiable at x = a

d) If a function f(x) is continuous at x = a, then $\lim_{x \to a} f(x)$ exists

182. The value of the derivative of |x - 1| + |x - 3| at x = 2 is

a) 2

d) -2

On the interval I = [-2, 2], the function $f(x) = \begin{cases} (x+1) e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

a) Is continuous for all $x \in I - \{0\}$

b) Assumes all intermediate values from f(-2) to f(2)

c) Has a maximum value equal to 3/e

d) All the above

184. Function $f(x) = \begin{cases} x - 1, x < 2 \\ 2x - 3, x \ge 2 \end{cases}$ is a continuous function

a) For x = 2 only

b) For all real values of x such that $x \neq 2$

c) For all real values of x

d) For all integer values of x only

185. The function $f(x) = \begin{cases} \frac{\tan x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$, is

a) Continuous but not differentiable at x = 0

b) Discontinuous at x = 0

c) Continuous and differentiable at x = 0

d) Not defined at x = 0

186. At the point x = 1, the function $f(x) = \begin{cases} x^3 - 1, & 1 < x < \infty \\ x - 1, & -\infty < x < 1 \end{cases}$

a) Continuous and differentiable

b) Continuous and not differentiable

c) Discontinuous and differentiable

d) Discontinuous and not differentiable

If f(x) defined by $f(x) = \begin{cases} \frac{|x^2 - x|}{x^2 - x}, & x \neq 0, 1 \\ 1, & x = 0 \end{cases}$ then f(x) is continuous for all 187.

a) x

b) x except at x = 0

c) x except at x = 1

d) x except at x = 0 and x = 1

188. The value of derivative of |x-1| + |x-3| at x=2, is

a) -2

c) 2

d) Not defined

189. If $f(x) = \begin{cases} 1 & \text{for } x < 0 \\ 1 + \sin x & \text{for } 0 \le x \le \pi/2 \end{cases}$, then at x = 0, the derivative f'(x) is b) 0 c) Infinite d) Does not exist 190. Let $g(x) = \frac{(x-1)^n}{\log \cos^m(x-1)}$; 0 < x < 2, m and n are integers, $m \ne 0, n > 0$, and let p be the left hand derivative of |x-1| at x=1. If $\lim_{x\to 1^+} g(x)=p$, then
a) n=1, m=1 b) n=1, m=-1 c) n=2, m=2 d) n=2, m=n191. The function $f(x)=\frac{2x^2+7}{x^3+3x^2-x-3}$ is discontinuous for b) x = 1 and x = -1 only a) x = 1 only d) x = 1, x = -1, x = -3 and other values of xc) x = 1, x = -1, x = -3 only 192. If for a function f(x), f(2) = 3, f'(2) = 4, then $\lim_{x \to 2} [f(x)]$, where $[\cdot]$ denotes the greatest integer function, is c) 4 a) 2 d) Non-existent 193. A function f(x) is defined as fallows for real x, $f(x) = \begin{cases} 1 - x^2, & \text{for } x < 1 \\ 0, & \text{for } x = 1 \end{cases}$ Then, $1 + x^2, & \text{for } x > 1$ a) f(x), is not continuous at x = 1b) f(x) is continuous but not differentiable at x = 1c) f(x) is both continuous and differentiable at x = 1d) None of the above 194. Let $f: R \to R$ be a function defined by $f(x) = \min\{x + 1, |x| + 1\}$. Then, which of the following is true? b) f(x) is not differentiable at x = 1a) $f(x) \ge 1$ for all $x \in R$ c) f(x) is differentiable everywhere d) f(x) is not differentiable at x = 0195. If $f(x) = \begin{cases} mx + 1, & x \le \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2} \end{cases}$ is continuous $t = \frac{\pi}{2}$, then a) m = 1, n = 0 b) $m = \frac{n\pi}{2} + 1$ c) $n = m\frac{\pi}{2}$ d) $m = n = \frac{\pi}{2}$ 196. If $f(x) = \frac{\log_e(1+x^2\tan x)}{\sin x^3}$, $x \neq 0$, is to be continuous at x = 0, then f(0) must be defined as Let $f(x) = \begin{cases} x^p \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ then f(x) is continuous but not differentiable at x = 0, if c) $-\infty d) <math>p = 0$ b) $1 \le p < \infty$ a) 0198. The function f defined by $f(x) = \begin{cases} \frac{\sin x^2}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is a) Continuous and derivable at x = 0b) Neither continuous nor derivable at x = 0c) Continuous but not derivable at x = 0d) None of these 199. A function f on R into itself is continuous at a point a in R, iff for each ∈> 0, there exists, δ > 0 such that b) $|f(x) - f(a)| > \in \Rightarrow |x - a| > \delta$ a) $|f(x) - f(a)| \le |x - a| < \delta$ c) $|x-a| > \delta |f(x) - f(a)| > \epsilon$ d) $|x - a| < \delta |f(x) - f(a)| < \epsilon$ 200. The function $f(x) = x - |x - x^2|, -1 \le x \le 1$ is continuous on the interval c) $[-1,0) \cup (0,1]$ d) $(-1,0) \cup (0,1)$ b) (-1,1)a) [-1,1] 201. if $f(x) = a|\sin x| + be^{|x|} + c|x|^3$ and if f(x) is differentiable at x = 0, then b) $a = 0, b = 0; c \in R$ c) $b = c = 0, a \in R$ d) $c = 0, a = 0, b \in R$ a) a = b = c = 0

202. Let f(x) be defined on R such that f(1) = 2, f(2) = 8 and $f(u + v) = f(u) + kuv - 2v^2$ for all $u, v \in R$ (k is a fixed constant). Then,

- a) f'(x) = 8x
- b) f(x) = 8x
- c) f'(x) = x
- d) None of these

203. If $f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$, then f(x) is differentiable on

- a) [-1,1]
- b) $R \{-1, 1\}$
- c) R (-1, 1)
- d) None of these

204. Define f on R into itself by

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$
, then

- a) f is continuous at 0 but not differentiable at 0
- b) f is both continuous and differentiable at 0
- c) f is differentiable but not continuous at 0
- d) None of the above

205. The set of points where the function $f(x) = |x - 1|e^x$ is differentiable, is

a) R

- b) $R \{1\}$
- c) $R \{-1\}$
- d) $R \{0\}$

206. Let f(x+y) = f(x)f(y) and f(x) = 1 + xg(x)G(x), where $\lim_{x\to 0} g(x) = a$ and $\lim_{x\to 0} G(x) = b$. Then f'(x) is equal to

- a) 1 + ab
- b) ab

c) a/b

d) None of these

CONTINUITY AND DIFFERENTIABILITY

5) l 9) a 13) a	b b a a a	2) 6) 10) 14)	d b d	3) 7)	b b	4)	ا م	400)							
5) l 9) a 13) a	b a a	6) 10)	b	7)		T)		1001	b	110)	a	111)	a	112)	C
9) a 13) a	a a	10)				8)	- 1	109) 113)	b	114)	c	115)	c	116)	c
13) a	a		u	11)	d	12)	-			118)	b	119)	b	120)	
		141	b	11)	d			117) 121)	c				b		c d
1/) i	a		1000	15)		16)			a	122)	C	123)	5000	124)	
243 1	1.	18)	b	19)	C	20)		125)	C	126)	b	127)	a	128)	b
•	b	22)	c	23)	d	24)		129)	d	130)	b	131)	b	132)	a
	a	26)	d	27)	c	28)		133)	a	134)	d	135)	a	136)	d
	d	30)	b	31)	b	32)	9-17-07	137)	a	138)	b	139)	d	140)	a
	b	34)	С	35)	d	36)		141)	C	142)	d	143)	a	144)	a
	b	38)	a	39)	a	40)		145)	a	146)	d	147)	a	148)	b
500	C	42)	b	43)	b	44)		149)	С	150)	b	151)	a	152)	C
	d	46)	c	47)	d	48)	b	153)	b	154)	a	155)	b	156)	d
49) (c	50)	d	51)	c	52)	a	157)	d	158)	d	159)	d	160)	b
53)	c	54)	b	55)	c	56)	d	161)	c	162)	a	163)	a	164)	c
57)	c	58)	d	59)	b	60)	c	165)	b	166)	b	167)	c	168)	c
61) a	a	62)	a	63)	a	64)	b	169)	a	170)	b	171)	a	172)	c
65)	d	66)	a	67)	C	68)	d	173)	C	174)	b	175)	b	176)	C
69)	d	70)	a	71)	a	72)	b	177)	b	178)	b	179)	C	180)	d
73) 1	b	74)	С	75)	d	76)	b	181)	b	182)	c	183)	d	184)	c
77) 1	b	78)	С	79)	b	80)	ь	185)	c	186)	b	187)	d	188)	b
81)	d	82)	c	83)	a	84)	ь	189)	d	190)	c	191)	c	192)	c
	c	86)	C	87)	c	88)	ь	193)	a	194)	c	195)	c	196)	a
	с	90)	a	91)	b	92)		197)	a	198)	a	199)	a	200)	a
	b	94)	С	95)	b	96)	- 1	201)	b	202)	a	203)	b	204)	a
	d	98)	d	99)	d	100)		205)	b	206)	d		50/C		
BANTING "	a	102)	b	103)	С	104)	c	,	AT-60	,	1000				
	a	106)	a	107)	d	108)	a								

CONTINUITY AND DIFFERENTIABILITY

: HINTS AND SOLUTIONS :

(b)

We have,

$$-\pi/4 < x < \pi/4$$

$$\Rightarrow -1 < \tan x < 1 \Rightarrow 0 \le \tan^2 x < 1 \Rightarrow [\tan^2 x]$$
$$= 0$$

$$f(x) = [\tan^2 x] = 0 \text{ for all } x \in (-\pi/4, \pi/4)$$

Thus, f(x) is a constant function on $\in (-\pi/4, \pi/4)$

So, it is continuous on $\in (-\pi/4, \pi/4)$ and f'(x) =0 for all $x \in (-\pi/4, \pi/4)$

2

Since, f(x) is continuous at x = 0

$$\lim_{x\to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{-e^x + 2^x}{x} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{-e^x + 2^x}{x} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{-e^x + 2^x \log 2}{1} = f(0) \quad \text{[by L 'Hospital's rule]}$$

$$\Rightarrow f(0) = -1 + \log 2$$

3

Since f(x) is an even function

$$f(-x) = f(x) \text{ for all } x$$

$$\Rightarrow -f'(-x) = f'(x)$$
 for all x

$$\Rightarrow f'(-x) = -f'(x)$$
 for all x

 $\Rightarrow f'(x)$ is an odd function

(c)

We have,

$$f(x) = \begin{cases} [\cos \pi \, x], x < 1 \\ |x - 2|, 1 \le x < 2 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 2 - x, & 1 \le x < 2 \\ -1, & 1/2 < x < 1 \\ 0, & 0 < x \le 1/2 \\ 1, & x = 0 \\ 0, & -1/2 \le x < 0 \\ -1, & -3/2 < x < -1/2 \end{cases}$$

It is evident from the definition that f(x) is discontinuous at x = 1/2

5 (b)

We have,

$$\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} f(2 - h)$$

$$= \lim_{h \to 0} \frac{|-2 - h + 2|}{\tan^{-1}(-2 - h + 2)}$$

$$\Rightarrow \lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} \frac{h}{\tan^{-1}(-h)} = \lim_{h \to 0} \frac{-h}{\tan^{-1}h} = -1$$
and,

$$\lim_{x \to -2^+} f(x) = \lim_{h \to 0} f(-2+h)$$

$$= \lim_{h \to 0} \frac{|-2+h+2|}{\tan^{-1}(-2+h+2)}$$

$$\Rightarrow \lim_{x \to -2^+} f(x) = \lim_{h \to 0} \frac{h}{\tan^{-1} h} = 1$$

$$\lim_{x\to -2^-} f(x) \neq \lim_{\to -2^+} f(x)$$

So, f(x) is neither continuous nor differentiable at x = -2

(b)

From the graph of $f(x) = |\log|x||$ it is clear that f(x) is everywhere continuous but not differentiable at $x = \pm 1$, due to sharp edge

(b)

We have,

$$\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$$

$$= \lim_{x \to a} \frac{xf(a) - af(a) - a(f(x) - f(a))}{x - a}$$

$$\Rightarrow \lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$$

$$= \lim_{x \to a} \frac{f(a)(x - a)}{x - a}$$

$$- a \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$\Rightarrow \lim_{x \to a} \frac{x f(a) - a f(x)}{x - a} = f(a) - a f'(a) = 4 - 2a \qquad = \lim_{x \to 0} \frac{2 - 2}{2(1 - 0)} = 0$$

8

Given, $f(x) = x(\sqrt{x} + \sqrt{x+1})$. At x = 0 LHL of \sqrt{x} is not defined, therefore it is not continuous at x = 0

Hence, it is not differentiable at x = 0

9

Here,
$$f'(x) = \begin{cases} 2ax, & b \neq 0, x \leq 1 \\ 2bx + a, & x > 1 \end{cases}$$

Since, f(X) is continuous at x = 1

$$\lim_{h\to 0} f(x) = \lim_{h\to 1^+} f(x)$$

$$\Rightarrow$$
 $a+b=b+a+c \Rightarrow c=0$

Also, f(x) is differentiable at x = 1

$$\therefore (LHD \text{ at } x = 1) = (RHD \text{ at } x = 1)$$

$$\Rightarrow 2a = 2b(1) + a \Rightarrow a = 2b$$

10 (d)

We have,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left\{ \frac{x^{2}}{4} - \frac{3x}{4} + \frac{13}{4} \right\} = \frac{1}{4} - \frac{3}{2} + \frac{13}{4}$$

$$= 2$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1} |x - 3| = 2$$

and,
$$f(1) = |1 - 3| = 2$$

$$\lim_{x \to 1^{-}} f(x) = f(1) = \lim_{x \to 1^{+}} f(x)$$

So, f(x) is continuous at x = 1

We have,

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3} |x - 3| = 0, \lim_{x \to 3^{+}} f(x)$$
$$= \lim_{x \to 3} |x - 3| = 0$$

and,
$$f(3) = 0$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$$

So, f(x) is continuous at x = 3

Now,

(LHD at x = 1)

$$= \left\{ \frac{d}{dx} \left(\frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4} \right) \right\}_{x=1} = \left\{ \frac{x}{2} - \frac{3}{2} \right\}_{x=1} = \frac{1}{2} - \frac{3}{2}$$

$$= -1$$

(RHD at
$$x = 1$$
) = $\left\{ \frac{d}{dx} \left(-(x-3) \right) \right\}_{x=1} = -1$

 \therefore (LHD at x = 1) = (RHD at x = 1)

So, f(x) is differentiable at x = 1

$$f(x) = \begin{cases} \frac{2\sin x - \sin 2x}{2x\cos x}, & \text{if } x \neq 0, \\ a, & \text{if } x = 0 \end{cases}$$
Now,
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2\sin x - \sin 2x}{2x\cos x} \quad \left(\frac{0}{0} \text{ form}\right)$$

$$= \lim_{x \to 0} \frac{2\cos x - 2\cos 2x}{2\cos x}$$

$$=\lim_{x\to 0} \frac{2-2}{2(1-0)} = 0$$

Since, f(x) is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x)$$

$$\Rightarrow a = 0$$

12 (a)

Given,
$$f(x) = x + |x|$$

$$f(x) = \begin{cases} 2x, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

It is clear from the graph of f(x) is continuous for every value of x

Alternate

Since, x and |x| is continuous for every value of x, so their sum is also continous for every value of x

13 (a)

Since f(x) is continuous at x = 0

$$\lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x)$$

$$\lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x)$$

$$\Rightarrow \lim_{x \to 0} \{1 + |\sin x|\}^{\frac{a}{|\sin x|}} = b = \lim_{x \to 0} e^{\frac{\tan 2x}{\tan 3x}}$$

$$\Rightarrow e^a = b = e^{2/3} \Rightarrow a = \frac{2}{3}$$
 and $a = \log_e b$

$$f(x) = \begin{cases} x^2 + \frac{(x^2/1 + x^2)}{1 - (1/1 + x^2)} = x^2 + 1, x \neq 0 \\ 0, \quad x = 0 \end{cases}$$

Clearly, $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = 1 \neq f(0)$

So, f(x) is discontinuous at x = 0

LHD=
$$\lim_{h\to 0} \frac{f(0-h)-f(0)}{-h}$$

1 - 1

$$= \lim_{h \to 0} \frac{1 - 1}{-h} = 0$$

RHD=
$$\lim_{h \to 0} \frac{f(0+h)-f(0)}{h}$$

RHD=
$$\lim_{h\to 0} \frac{f(0+h)-f(0)}{h}$$

= $\lim_{h\to 0} \frac{1+\sin(0+h)-1}{h} = \lim_{h\to 0} \frac{\sin h}{h} = 1$

16 (a)

Given,
$$f(x) = x - |x - x^2|$$

At
$$x = 1$$
, $f(1) = 1 - |1 - 1| = 1$

$$\lim_{x \to 1^{-1}} f(x) = \lim_{h \to 0} [(1 - h) - |(1 - h) - (1 - h)^{2}|]$$

$$= \lim_{h \to 0} \left[(1 - h) - |h - h^2| \right] = 1$$

$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} [(1+h) - |(1+h) - (1+h)^2|]$$

$$= \lim_{h \to 0} [1 + h - |-h^2 - h|] = 1$$

$$\therefore \lim_{x \to 1^{-1}} f(x) = \lim_{x \to 1^{+}} = f(1)$$

We have,

$$f(x + y + z) = f(x)f(y)f(z)$$
 for all x, y, z ...(i)
 $\Rightarrow f(0) = f(0)f(0)f(0)$ [Putting $x = y = z = 0$]

$$\Rightarrow f(0)\{1 - f(0)^2\} = 0$$

$$\Rightarrow f(0) = 1$$
 [: $f(0) = 0 \Rightarrow f(x) = 0$ for all x]

Putting z = 0 and y = 2 in (i), we get

$$f(x+2) = f(x)f(2)f(0)$$

$$\Rightarrow f(x+2) = 4f(x)$$
 for all x

$$\Rightarrow f'(2) = 4f'(0) \qquad [Putting x = 0]$$

$$\Rightarrow f'(2) = 4 \times 3 = 12$$

18 **(b)**

For x > 1, we have

$$f(x) = |\log |x|| = \log x \quad \Rightarrow \quad f'(x) = \frac{1}{x}$$

For x < -1, we have

$$f(x) = |\log|x|| = \log(-x)$$
 \Rightarrow $f'(x) = \frac{1}{x}$

For 0 < x < 1, we have

$$f(x) = |\log|x|| = -\log x \quad \Rightarrow \quad f'(x) = \frac{-1}{x}$$

For -1 < x < 0, we have

$$f(x) = -\log(-x) \implies f'(x) = -\frac{1}{x}$$

Hence,
$$f'(x) = \begin{cases} \frac{1}{x}, & |x| > 1\\ -\frac{1}{x}, & |x| < 1 \end{cases}$$

19 (c)

Since,
$$\lim_{x\to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{1 - \cos x}{x^2} = k$$

$$\Rightarrow \lim_{x \to 0} \frac{-(-\sin x)}{2x} = k \quad [\text{using L 'Hospital's rule}]$$

$$\Rightarrow \frac{1}{2} \lim_{x \to 0} \frac{\sin x}{x} = k \quad \Rightarrow \quad k = \frac{1}{2}$$

Given,
$$f(X) = |x - 1| + |x - 2|$$

$$= \begin{cases} x - 1 + x - 2, & x \ge 2 \\ x - 1 + 2 - x, & 1 \le x < 2 \\ 1 - x + 2 - x, & x < 1 \end{cases}$$

$$= \begin{cases} 2x - 3, & x \ge 2 \\ 1, & 1 \le x < 2 \\ 3 - 2x, & x < 1 \end{cases}$$

$$f'(x) = \begin{cases} 2, & x > 2 \\ 0, & 1 < x < 2 \\ -1, & x < 1 \end{cases}$$

$$f'(x) = \begin{cases} 2, & x > 2 \\ 0, & 1 < x < 2 \end{cases}$$

$$\begin{cases} -1, & x < 1 \end{cases}$$

Hence, except $x = 1$ and $x = 2$, $f(x)$ is

differentiable everywhere in R

21 **(b)**

Clearly, f(x) is differentiable for all non-zero values of x. For $x \neq 0$, we have

$$f'(x) = \frac{x e^{-x^2}}{\sqrt{1 - e^{-x^2}}}$$

(LHD at
$$x = 0$$
) = $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0}$
= $\lim_{h \to 0} \frac{f(0 - h) - f(0)}{x - 0}$

$$\Rightarrow (LHD \text{ at } x = 0) = \lim_{h \to 0} \frac{\sqrt{1 - e^{-h^2}}}{-h}$$
$$= \lim_{h \to 0} -\frac{\sqrt{1 - e^{-h^2}}}{h}$$

$$\Rightarrow$$
 (LHD at $x = 0$) = $-\lim_{h \to 0} \sqrt{\frac{e^{h^2} - 1}{h^2}} \times \frac{1}{\sqrt{e^{h^2}}} = -1$

and, (RHD at
$$x = 0$$
) = $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0}$ =

$$\lim_{h\to 0} \frac{\sqrt{1-e^{-h^2}}-0}{h}$$

$$\Rightarrow$$
 (RHD at $x = 0$) = $\lim_{h \to 0} \sqrt{\frac{e^{h^2} - 1}{h^2}} \times \frac{1}{\sqrt{e^{h^2}}} = 1$

So, f(x) is not differentiable at x = 0

Hence, the set of points of differentiability of f(x)is $(-\infty,0) \cup (0,\infty)$

22 (c)

Since f(x) is continuous at x = 0

$$f(0) = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

23 (d)

For f(x) to be continuous everywhere, we must

$$f(0) = \lim_{x \to 0} f(x)$$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{2 - (256 - 7x)^{1/8}}{(5x + 32)^{1/5} - 2} \quad \left[\text{Form } \frac{0}{0} \right]$$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{\frac{7}{8}(256 - 7x)^{-\frac{7}{8}}}{(5x + 32)^{-4/5}} = \frac{7}{8} \times \frac{2^{-7}}{2^{-4}} = \frac{7}{64}$$

24 **(b)**

We have,

$$f(x) = |x|^3 = \begin{cases} x^3, & x \ge 0 \\ -x^3, & x < 0 \end{cases}$$

$$\therefore \text{ (LHD at } x = 0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} -\frac{x^{3}}{x}$$
$$= 0$$

and.

$$\text{: (RHD at } x = 0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^3}{x}$$

$$= 0$$

Clearly, (LHD at x = 0) = (RHD at x = 0)

Hence, f(x) is differentiable at x = 0 and its derivative at x = 0 is 0

25 (a)

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{4^x - 1}{x} \right)^3 \times \frac{\left(\frac{x}{a} \right)}{\sin\left(\frac{x}{a} \right)} \cdot \frac{ax^2}{\log\left(1 + \frac{1}{3}x^2 \right)}$$

$$= (\log 4)^3 \cdot 1 \cdot a \lim_{x \to 0} \left(\frac{x^2}{\frac{1}{3}x^2 - \frac{1}{18}x^4 + \dots} \right)$$

$$= 3a (\log 4)^3$$

$$\therefore \lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow 3a (\log 4)^3 = 9(\log 4)^3$$

26 (d)

We have,

 $\Rightarrow a = 3$

$$f(x) = |[x]x| \text{ for } -1 < x \le 2$$

$$\Rightarrow f(x) = \begin{cases} -x, & -1 < x < 0 \\ 0, & 0 \le x < 1 \\ x, & 1 \le x < 2 \\ 2x, & x = 2 \end{cases}$$

It is evident from the graph of this function that it is continuous but not differentiable at x = 0. Also, it is discontinuous at x = 1 and non-differentiable at x = 2

27 (c)

Given, $f(x) = [x^3 - 3]$

Let $g(x) = x^3 - x$ it is in increasing function

$$g(1) = 1 - 3 = -2$$

and $g(2) = 8 - 3 = 5$

Here, f(x) is discontinuous at six points

Given,
$$y = \cos^{-1} \cos(x - 1)$$
, $x > 0$
 $\Rightarrow y = x - 1$, $0 \le x - 1 \le \pi$
 $\therefore y = x - 1$, $1 \le x \le \pi + 1$
At $x = \frac{5\pi}{4} \in [1, \pi + 1]$
 $\Rightarrow \frac{dy}{dx} = 1 \Rightarrow \left(\frac{dy}{dx}\right)_{x = \frac{5\pi}{4}} = 1$

29 (d)

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h} \quad [\because f(x+y)]$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h) + f(h) - f(h)}{h} \quad [\because f(x+y)]$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(h) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(h) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(h) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(h) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(h) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(h) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(h) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(h) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(h) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(h) \lim_{h \to 0} \frac{f(h) - f(h)}{h}$$

$$\Rightarrow f'(x) = f(h)$$

Using Heine's definition of continuity, it can be shown that f(x) is everywhere discontinuous

31

For
$$x \ne -1$$
, we have $f(x) = 1 - 2x + 3x^2 - 4x^3 + \dots \infty$

$$\Rightarrow f(x) = (1+x)^{-2} = \frac{1}{(1+x)^2}$$

$$f(x) = \begin{cases} \frac{1}{(1+x)^2}, & x \neq -1\\ 1, & x = -1 \end{cases}$$

We have, $\lim_{x \to -1^{-}} f(x) \to \infty$ and $\lim_{x \to -1^{-}} f(x) \to \infty$

So, f(x) is not continuous at x = -1

Consequently, it is not differentiable there at

32 (b)

At
$$x = a$$
,

LHL=
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a} 2a - x = a$$

And RHL=
$$\lim_{x\to a^+} f(x) = \lim_{x\to a} 3x - 2a = a$$

$$And f(a) = 3(a) - 2a = a$$

$$\therefore$$
 LHL=RHL= $f(a)$

Hence, it is continuous at x = a

Again, at x = a

$$LHD = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$$

$$= \lim_{h \to 0} \frac{2a - (a - h) - a}{-h} = -1$$

and RHD=
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$

$$= \lim_{h \to 0} \frac{3(a+h) - 2a - a}{h} = 3$$

∴ LHD≠RHD

Hence, it is not differentiable at x = a

33 (b)

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$

$$\Rightarrow f'(x) = f(x)\lim_{h \to 0} \frac{f(h) - 1}{h}$$

$$\Rightarrow f'(x) = f(x)\lim_{h \to 0} \frac{1 + (\sin 2h)g(h) - 1}{h}$$

$$\Rightarrow f'(x) = f(x)\lim_{h \to 0} \frac{\sin 2h}{h} \times \lim_{h \to 0} g(h)$$

$$= 2f(x)g(0)$$

If $-1 \le x \le 1$, then $0 \le x \sin \pi x \le 1/2$

$$f(x) = [x \sin \pi x] = 0, \text{ for } -1 \le x \le 1$$

If 1 < x < 1 + h, where h is a small positive real number, then

$$\pi < \pi x < \pi + \pi h \Rightarrow -1 < \sin \pi x < 0 \Rightarrow -1$$
$$< x \sin \pi x < 0$$

$$f(x) = [x \sin \pi x] = -1 \text{ in the right}$$

neighbourhood of x = 1

Thus, f(x) is constant and equal to zero in [-1, 1]and so f(x) is differentiable and hence continuous on (-1,1)

At x = 1, f(x) is discontinuous because

$$\Rightarrow \lim_{x \to 1^{-}} f(x) = 0 \text{ and } \lim_{x \to 1^{+}} f(x) = -1$$

Hence, f(x) is not differentiable at x = 1

35 (d)

We have,

(LHD at
$$x = 0$$
) = $\left\{ \frac{d}{dx} (1) \right\}_{x=0} = 0$
(RHD at $x = 0$) = $\left\{ \frac{d}{dx} (1 + \sin x) \right\}_{x=0} = \cos 0 = 1$

Hence, f'(x) at x = 0 does not exist

36 (c)

Here,
$$f'(x) = \begin{cases} 2bx + a, & x \ge -1 \\ 2a, & x < -1 \end{cases}$$

Given, f'(x) is continuous everywhere

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$$

$$\Rightarrow$$
 $-2b + a = -2a$

$$\Rightarrow$$
 3a = 2b

$$\Rightarrow a=2, b=3$$

or
$$a = -2$$
, $b = -3$

37 **(b)**

We have,

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\log \cos x}{\log(1 + x^2)}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$

$$= \lim_{x \to 0} \frac{\log(1 - 1 + \cos x)}{\log(1 + x^2)}$$

$$\frac{1-\cos x}{1-\cos x}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$

$$= \lim_{x \to 0} \frac{\log\{1 - (1 - \cos x)\}}{1 - \cos x}$$
$$\cdot \frac{1 - \cos x}{\log(1 + x^2)}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$

$$= -\lim_{x \to 0} \log \frac{[1 - (1 - \cos x)]}{-(1 - \cos x)}$$
$$2 \sin^2 \frac{x}{2} \qquad x^2$$

$$\times \frac{2\sin^2\frac{x}{2}}{4\left(\frac{x}{2}\right)^2} \times \frac{x^2}{\log(1+x^2)}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = -\frac{1}{2}$$

Hence, f(x) is differentiable and hence continuous at x = 0

38 (a)

Since f(x) is continuous at x = 1. Therefore,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) \Rightarrow A - B = 3 \Rightarrow A = 3 + B$$

If f(x) is continuous at x = 2, then

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) \Rightarrow 6 = 4 B - A \quad ...(ii)$$

Solving (i) and (ii) we get B = 3

As f(x) is not continuous at x = 2. Therefore, $B \neq$

Hence, A = 3 + B and $B \neq 3$

39 (a)

We have.

$$f(x) = \begin{cases} x - 4, & x \ge 4 \\ -(x - 4), & 1 \le x < 4 \\ (x^3/2) - x^2 + 3x + (1/2), & x < 1 \end{cases}$$

differentiable at x = 1 and x = 4

It is given that f(x) is continuous at x = 1

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

$$\Rightarrow \lim_{x \to 1^{-}} a[x+1] + b[x-1]$$

$$= \lim_{x \to 1^+} a[x+1] + b[x-1]$$

$$\Rightarrow a - b = 2a + 0 \times b$$

$$\Rightarrow a + b = 0$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \lambda[x] = 0$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 5^{1/x} = 0$$

And
$$f(0) = \lambda[0] = 0$$

f is continuous only whatever λ may be

42 **(b)**

We have,

$$y(x) = f(e^x) e^{f(x)}$$

$$\Rightarrow y'(x) = f'(e^x) \cdot e^x \cdot e^{f(x)} + f(e^x) e^{f(x)} f'(x)$$

$$\Rightarrow v'(0) = f'(1)e^{f(0)} + f(1)e^{f(0)}f'(0)$$

$$\Rightarrow y'(0) = f'(1)e^{f(0)} + f(1)e^{f(0)}f'(0)$$

\Rightarrow y'(0) = 2 [:: $f(0) = f(1) = 0, f'(1) = 2$]

Since f(x) is differentiable at x = 1. Therefore,

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1 - h) - f(1)}{-h} = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{a(1 - h)^{2} - b - 1}{-h} = \lim_{h \to 0} \frac{\frac{1}{|1 + h|} - 1}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{a(1-h) - b - 1}{-h} = \lim_{h \to 0} \frac{|1+h|}{h}$$

$$(a-b-1) - 2ah + ah^{2} \qquad -h$$

$$\Rightarrow \lim_{h \to 0} \frac{(a - b - 1) - 2 ah + ah^2}{-h} = \lim_{h \to 0} \frac{-h}{h(1 + h)}$$

$$\Rightarrow \lim_{h \to 0} \frac{-(a-b-1)-2 \ ah - ah^2}{h} = -1$$

$$\Rightarrow$$
 $-(a-b-1) = 0$ and so $\lim_{h\to 0} \frac{2ah-ah^2}{h} = -1$

$$\Rightarrow a - b - 1 = 0 \text{ and } 2a = -1 \Rightarrow a = -\frac{1}{2}, b = -\frac{3}{2}$$

44 (c)

We have,

$$f(x) = \frac{\sin 4 \pi [x]}{1 + [x]^2} = 0 \text{ for all } x \text{ [}$$

 $4\pi[x]$ is a multiple of π

$$\Rightarrow f'(x) = 0$$
 for all x

45 (d)

We have,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \sin \frac{1}{x}$$

$$\Rightarrow \lim_{x\to 0} f(x) =$$
An oscillating number which

oscillates between -1 and 1

Hence, $\lim_{x\to 0} f(x)$ does not exist

Consequently, f(x) cannot be continuous at x = 0for any value of k

46 (c)

It is clear from the graph that f(x) is continuous everywhere and also differentiable everywhere except $\{-1, 1\}$ due to sharp edge

47 (d)

We have,

$$\log\left(\frac{x}{y}\right) = \log x - \log y \text{ and } \log(e) = 1$$

$$f(x) = \log x$$

Clearly, f(x) is unbounded because $f(x) \to -\infty$ as

 $x \to 0$ and $f(x) \to +\infty$ as $x \to \infty$

We have.

$$f\left(\frac{1}{x}\right) = \log\left(\frac{1}{x}\right) = -\log x$$

As
$$x \to 0$$
, $f\left(\frac{1}{x}\right) \to \infty$

$$\lim_{x \to 0} x f(x) = \lim_{x \to 0} x \log x = \lim_{x \to 0} \frac{\log x}{1/x}$$

$$\Rightarrow \lim_{x \to 0} x f(x) = \lim_{x \to 0} \frac{1/x}{-1/x^2} = -\lim_{x \to 0} x = 0$$

49 (c)

Since g(x) is the inverse of f(x). Therefore, fog(x) = x, for all x

$$\Rightarrow \frac{d}{dx} \{ fog(x) \} = 1, \text{ for all } x$$

$$\Rightarrow f'(g(x))g'(x) = 1$$
, for all x

$$\Rightarrow \frac{1}{1 + (g(x))^3} \times g'(x) = 1 \text{ for all } x \qquad \left[\because f'(x) = \frac{1}{1 + (g(x))^3} \right]$$

$$\Rightarrow g'(x) = 1 + \{g(x)\}^3$$
, for all x

50 (d)

We have,

$$f(x) = |x^2 - 4x + 3|$$

$$\Rightarrow f(x) = \begin{cases} x^2 - 4x + 3, & \text{if } x^2 - 4x + 3 \ge 0 \\ -(x^2 - 4x + 3), & \text{if } x^2 - 4x + 3 < 0 \end{cases}$$
$$\Rightarrow f(x) = \begin{cases} x^2 - 4x + 3, & \text{if } x \le 1 \text{ or } x \ge 3 \\ -x^2 + 4x - 3, & \text{if } 1 < x < 3 \end{cases}$$

Clearly, f(x) is everywhere continuous

(LHD at
$$x = 1$$
) = $\left(\frac{d}{dx}(x^2 - 4x + 3)\right)_{\text{at } x = 1}$
 \Rightarrow (LHD at $x = 1$) = $(2x - 4)_{\text{at } x = 1} = -2$

⇒ (LHD at
$$x = 1$$
) = $(2x - 4)_{at x=1} = -2$ and,

(RHD at
$$x = 1$$
) = $\left(\frac{d}{dx}(-x^2 + 4x - 3)\right)_{\text{at } x = 1}$

$$\Rightarrow$$
 (RHD at $x = 1$) = $(-2x + 4)_{at x = 1} = 2$

Clearly, (LHD at
$$x = 1$$
) \neq (RHD at $x = 1$)
So, $f(x)$ is not differentiable at $x = 1$

Similarly, it can be checked that f(x) is not

differentiable at x = 3 also

ALITER We have,

$$f(x) = |x^2 - 4x + 3| = |x - 1| |x - 3|$$

Since, |x-1| and |x-3| are not differentiable at 1 and 3 respectively

Therefore, f(x) is not differentiable at x = 1 and x = 3

51 (c)

The point of discontinuity of f(x) are those points where $\tan x$ is infinite.

ie,
$$\tan x = \tan \infty$$

$$\Rightarrow \quad x = (2n+1)\frac{\pi}{2}, \qquad n \in \mathbb{R}$$

(a)

Using graphical transformation

As, we know the function is not differentiable at 6 sharp edges and in figure (iii) y = ||x| - 1| we have 3 sharp edges at x = -1, 0, 1

f(x) is not differentiable at $\{0, \pm 1\}$

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} 2(0 - h) = 0$$
And
$$\lim_{x \to 0^{+}} f(x) = \lim_{h \to 0} 2(0 + h) + 1 = 1$$

$$\lim_{x\to 0^-} f(x) \neq \lim_{x\to 1^+} f(x)$$

f(x) is discontinuous at x = 0

54 **(b)**

Draw a rough sketch of y = f(x) and observe its properties

55 **(c)**

$$\lim_{x \to \pi} \frac{(1 + \cos x) - \sin x}{(1 + \cos x) + \sin x}$$

$$= \lim_{x \to \pi} \frac{2 \cos^2 x / 2 - 2(\sin x / 2) \cos x / 2}{2 \cos^2 x / 2 + 2(\sin x / 2) \cos x / 2}$$

$$= \lim_{x \to \pi} \tan \left(\frac{\pi}{4} - \frac{\pi}{2}\right) = -1$$

Since, f(x) is continuous at $x = \pi$

$$f(\pi) = \lim_{x \to \pi} f(x) = -1$$

56 (d)

$$f'(1^{-}) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{(1-h-1) \cdot \sin\left(\frac{1}{1-h-1}\right) - 0}{-h}$$

$$= -\lim_{h \to 0} \frac{1}{h}$$
And
$$f'(1^{+}) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{(1+h-1) \sin\left(\frac{1}{1+h-1}\right) - 0}{h}$$

$$= \lim_{h \to 0} \frac{1}{h}$$

Again, now

$$f'(0^{+}) = \lim_{h \to 0} \frac{(0+h-1)\sin\left(\frac{1}{0+h-1}\right) - \sin 1}{h}$$
$$= \lim_{h \to 0} \frac{\left[-\left\{ (h-1)\cos\left(\frac{1}{h-1}\right) \times \left(\frac{1}{(h-1)^{2}}\right) \right\} + \sin\left(\frac{1}{h-1}\right) \right]}{1}$$

[using L 'Hospital's rule]

 $= \cos 1 - \sin 1$

And
$$f'(0^-) = \lim_{h \to 0} \frac{(0-h-1)\sin(\frac{1}{0-h-1})-\sin 1}{-h}$$

= $\lim_{h \to 0} \frac{(-h-1)\cos(\frac{1}{-h-1})(\frac{1}{(-h-1)^2})-\sin(\frac{1}{-h-1})}{-1}$

[using L 'Hospital's rule]

 $= \cos 1 - \sin 1$

$$\Rightarrow f'(0^-) = f'(0^+)$$

 \therefore f is differentiable at x = 0

57 (c)

As f(x) is continuous at $x = \frac{\pi}{2}$

$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} f(x)$$

$$\Rightarrow m \frac{\pi}{2} + 1 = \sin \frac{\pi}{2} + n \Rightarrow m \frac{\pi}{2} + 1 = 1 + n \Rightarrow n$$

$$= \frac{m \pi}{2}$$

Since,
$$\frac{f(6)-f(1)}{6-1} \ge 2$$
 $\left[\because f'(x) = \frac{y_2-y_1}{x_2-x_1}\right]$
 $\Rightarrow f(6) - f(1) \ge 10$
 $\Rightarrow f(6) + 2 \ge 10$
 $\Rightarrow f(6) \ge 8$

59 **(b)**

We have,

$$\lim_{x \to a^{-}} f(x) \ g(x) = \lim_{x \to a^{-}} f(x) \cdot \lim_{x \to a^{-}} g(x) = m \times l$$
$$= ml$$

and,

$$\lim_{x \to a^{+}} f(x) \ g(x) = \lim_{x \to a^{+}} f(x) \lim_{x \to a^{+}} g(x) = lm$$

$$\therefore \lim_{x \to a^{-}} f(x) \ g(x) = \lim_{x \to a^{+}} f(x) \ g(x) = lm$$

Hence, $\lim_{x\to a} f(x)$ g(x) exists and is equal to lm

60 **(c)**

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h} \quad [\because f(x+y)]$$

$$= f(x)f(y)$$

$$\Rightarrow f'(x) = f(x) \left\{ \lim_{h \to 0} \frac{1 + h g(h) - 1}{h} \right\} \quad [\because f(x)]$$

$$= 1 + x g(x)$$

 $f'(1^-) \neq f'(1^+)$

f is not differentiable at x = 1

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} g(h) = f(x) \cdot 1 = f(x)$$

We have,
$$f(x) = \begin{cases} x^2, & x \ge 0 \\ -x^2, & x < 0 \end{cases}$$

Clearly, f(x) is differentiable for all x > 0 and for all x < 0. So, we check the differentiable at x = 0Now, (RHD at x = 0)

$$\left(\frac{d}{dx}(x)^2\right)_{x=0} = (2x)_{x=0} = 0$$

$$\left(\frac{d}{dx}(-x)^2\right)_{x=0} = (-2x)_{x=0} = 0$$

$$\therefore$$
 (LHD at $x = 0$)=(RHD at $x = 0$)

So, f(x) is differentiable for all x ie, the set of all points where f(x) is differentiable is $(-\infty, \infty)$

Alternate

It is clear from the graph f(x) is differentiable everywhere.

62 (a)

Since,
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 10$$

$$\Rightarrow \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 10$$

$$\Rightarrow f(0) \left(\lim_{h \to 0} \frac{f(h) - 1}{h} \right) = 10 \quad \dots (i)$$

[:
$$f(0+h) = f(0)f(h)$$
, given]

Now, f(0) = f(0)f(0)

$$\Rightarrow f(0) = 1$$

: From Eq. (i)

$$\lim_{h \to 0} \frac{f(h) - 1}{h} = 10 \quad ...(ii)$$

Now,
$$f'(6) = \lim_{h \to 0} \frac{f(6+h) - f(6)}{h}$$

Now,
$$f'(6) = \lim_{h \to 0} \frac{f(6+h) - f(6)}{h}$$

= $\lim_{x \to 0} \left(\frac{f(h) - 1}{h}\right) f(6)$ [from Eq. (ii)]

 $= 10 \times 3 = 30$

63 (a)

We have,

$$f'(a^{+}) = \lim_{x \to a^{+}} \frac{f(x) - f(0)}{x - a}$$

$$\Rightarrow f'(a^{+}) = \lim_{x \to a^{+}} \frac{|x - a| \phi(x)|}{x - a}$$

$$\Rightarrow f'(a^{+}) = \lim_{x \to a} \frac{(x - a)}{(x - a)} \phi(x) \quad [\because x > a \ \therefore |x - a|]$$

$$= x - a]$$

$$\Rightarrow f'(a^+) = \lim_{x \to a} \phi(x)$$

$$\Rightarrow f'(a^+) = \lim_{x \to a} \phi(x)$$

\Rightarrow f'(a^+) = \phi(a) [: \phi(x) is continuous at x =

and,

$$f'(a^{-}) = \lim_{x \to a^{-}} \frac{f(x) - f(0)}{x - a}$$

$$\Rightarrow f'(a^{-}) = \lim_{x \to a^{-}} \frac{|x - a| \phi(x)}{x - a}$$

$$\Rightarrow f'(a^{-}) = \lim_{x \to a^{-}} \frac{|x - a|\phi(x)|}{x - a}$$
$$\Rightarrow f'(a^{-}) = \lim_{x \to a} \frac{(x - a)\phi(x)}{(x - a)} \quad [\because x < a \ \therefore |x - a|]$$

$$\Rightarrow f'(a^{-}) = -\lim_{x \to a} \phi(x)$$

$$\Rightarrow f'(a^-) = -\phi(a)$$
 [:

$$\phi(x)$$
 is continuous at $x = a$

 $\phi(x)$ is continuous at x = a

64 **(b)**

LHL=
$$\lim_{h\to 0} (0-h)_e^{-\left(\frac{1}{|-h|} + \frac{1}{(-h)}\right)} = \lim_{h\to 0} (-h) = 0$$

RHL=
$$\lim_{h\to 0} (0+h)_e^{-\left(\frac{1}{|h|} + \frac{1}{(h)}\right)} = \lim_{h\to 0} \frac{h}{e^{2/h}} = 0$$

LHL=RHL=f(0)

Therefore, f(x) is continuous for all x

Differentiability at x = 0

$$Lf'(0) = \lim_{h \to 0} \frac{(-h)e^{-(\frac{1}{h} - \frac{1}{h})}}{(-h) - 0} = 1$$

$$Rf'(0) = \lim_{h \to 0} \frac{he^{-(\frac{1}{h} + \frac{1}{h}) - 0}}{h - 0}$$

$$=\lim_{h\to 0}\frac{1}{e^{2/h}}=0$$

$$\Rightarrow Rf'(0)Lf'(0)$$

Therefore, f(x) is not differentiable at x = 0

65

We have,

$$f(x) = \begin{cases} 3, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$$

Clearly, f is continuous but not differentiable at

x = 0

Now,

$$f(|x|) = 2|x| + 1 \text{ for all } x$$

Clearly, f(|x|) is everywhere continuous but not differentiable at x = 0

67 (c)

We have.

$$f(x) = |x - 0.5| + |x - 1| + \tan x, 0 < x < 2$$

$$\Rightarrow f(x) = \begin{cases} -2x + 1.5 + \tan x, & 0 < x < 0.5 \\ 0.5 + \tan x, & 0.5 \le x < 1 \\ 2x - 1.5 + \tan x, & 1 \le x < 2 \end{cases}$$

It is evident from the above definition that

 $Lf'(0.5) \neq Rf'(0.5)$ and $Lf'(1) \neq Rf'(1)$

Also, the function is not continuous at $= \pi/2$. So, it cannot be differentiable thereat

68

Given,
$$f(x) = \begin{cases} \log_{(1-3x)}(1+3x), & \text{for } x \neq 0 \\ k, & \text{for } x = 0 \end{cases}$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\log(1+3x)}{\log(1-3x)}$$

$$= -\lim_{x \to 0} \frac{\log(1+3x)}{3x} \cdot \frac{(-3x)}{\log(1-3x)}$$

$$= -1$$
And $f(0) = k$

f(x) is continuous at x = 0

k = -1

69 (d)

Since f(x) is differentiable at x = c. Therefore, it is continuous at x = c

Hence, $\lim_{x \to c} f(x) = f(c)$

70 (a)

Given, $f(x) = ae^{|x|} + b|x|^2$

We know $e^{|x|}$ is not differentiable at x = 0 and $|x|^2$ is differentiable at x = 0

f(x) is differentiable at x = 0, if a = 0 and $b \in$

71 (a)

We have,

$$f(x) = \begin{cases} (x-x)(-x) = 0, x < 0\\ (x+x)x = 2x^2, x \ge 0 \end{cases}$$

As is evident from the graph of f(x) that it is continuous and differentiable for all x Also, we have

$$f''(x) = \begin{cases} 0, x < 0 \\ 4x, x \ge 0 \end{cases}$$

Clearly, f''(x) is continuous for all x but it is not differentiable at x = 0

Given,
$$f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & x \neq 1 \\ -\frac{1}{2}, & x = 1 \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{2x - 5}, & x \neq 1 \\ -\frac{1}{3}, & x = 1 \end{cases}$$

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{2(1+h)-5} - \left(-\frac{1}{3}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{2h-3} + \frac{1}{3}}{h} = \lim_{h \to 0} \frac{3+2h-3}{3h(2h-3)} = -\frac{2}{9}$$

$$Lf'(1) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{2(1-h)-5} - \left(-\frac{1}{3}\right)}{-h}$$
$$= \lim_{h \to 0} -\frac{2}{3(2h+3)} = -\frac{2}{9}$$

$$= \lim_{h \to 0} -\frac{2}{3(2h+3)} = -\frac{2}{9}$$

$$\therefore f'(1) = -\frac{2}{9}$$

73 (b)

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$
$$= \lim_{h \to 0} \frac{f(1+h)}{h} - \lim_{h \to 0} \frac{f(1)}{h}$$

Given,
$$\lim_{h \to 0} \frac{f(1+h)}{h} = 5$$

So, $\lim_{h\to 0} \frac{f(1)}{h}$ must be finite as f'(1) exist and

 $\lim_{h\to 0}\frac{f(1)}{h}$ can be finite only, if f(1)=0 and

$$\lim_{h\to 0}\,\frac{f(1)}{h}=0$$

So,
$$f'(1) = \lim_{h \to 0} \frac{f(1+h)}{h} = 5$$

Since, f(x) is continuous for every value of Rexcept {-1, -2}. Now, we have to check that points

At
$$x = -2$$

LHL=
$$\lim_{h\to 0} \frac{(-2-h)+2}{(-2-h)^2+3(-2-h)+2}$$

- $\lim_{h\to 0} \frac{-h}{h}$ = -1

$$= \lim_{h \to 0} \frac{-h}{h^2 + h} = -1$$

$$= \lim_{h \to 0} \frac{-h}{h^2 + h} = -1$$

$$RHL = \lim_{h \to 0} \frac{(-2+h)+2}{(-2+h)^2 + 3(-2+h)+2}$$

$$= \lim_{h \to 0} \frac{h}{h^2 - h} = -1$$

$$= \lim_{h \to 0} \frac{h}{h^2 - h} = -1$$

$$\Rightarrow$$
 LHL=RHL= $f(-2)$

 \therefore It is continuous at x = -2

Now, check for x = -1

$$\begin{split} \text{LHL} &= \lim_{h \to 0} \frac{(-1-h)+2}{(-1-h)^2+3(-1-h)+2} \\ &= \lim_{h \to 0} \frac{1-h}{h^2-h} = \infty \end{split}$$

$$=\lim_{h\to 0}\frac{1-h}{h^2-h}=\infty$$

RHL=
$$\lim_{h\to 0} \frac{(-1+h)+2}{(-1+h)^2+3(-1+h)+2}$$

$$=\lim_{h\to 0}\frac{1+h}{h^2+h}=\infty$$

$$\Rightarrow$$
 LHL=RHL \neq $f(-1)$

 \therefore It is not continuous at x = -1

The required function is continuous in $R - \{-1\}$

75 (d)

$$f(0) = \lim_{x \to 0} \frac{(e^x - 1)^2}{\sin\left(\frac{x}{a}\right)\log\left(1 + \frac{x}{4}\right)}$$

$$\Rightarrow \lim_{x \to 0} \left(\frac{e^x - 1}{x} \right)^2 \cdot \frac{\frac{x}{a} \cdot a}{\sin \frac{x}{a}} \cdot \frac{\frac{x}{4} \cdot 4}{\log \left(1 + \frac{x}{4} \right)} = 12$$

$$\Rightarrow 1^2. a. 4 = 12$$

$$\Rightarrow$$
 $a = 3$

76 **(b)**

We have

$$f(x) = \frac{x}{1+x} + \frac{x}{(x+1)(2x+1)} + \frac{x}{(2x+1)(3x+1)} + \dots \infty$$

$$\Rightarrow f(x) = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{x}{\left((r-1)x+1\right)(rx+1)}, \text{ for } x$$

$$\neq 0$$

$$\Rightarrow f(x) = \lim_{n \to \infty} \sum_{r=1}^{n} \left\{ \frac{1}{(r-1)x+1} - \frac{1}{rx+1} \right\}, \text{ for } x$$

$$\neq 0$$

$$\Rightarrow f(x) = \lim_{n \to \infty} \left\{ 1 - \frac{2}{nx+1} \right\} = 1, \text{ for } x \neq 0$$

For x = 0, we have f(x) =

Thus, we have $f(x) = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0 \end{cases}$

Clearly, $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) \neq f(0)$

So, f(x) is not continuous at x = 0

77 (b)

If possible, let f(x) + g(x) be continuous. Then, ${f(x) + g(x)} - f(x)$ must be continuous

 \Rightarrow g(x) must be continuous

This is a contradiction to the given fact that g(x)is discontinuous

Hence, f(x) + g(x) must be discontinuous

78 (c)

We have,

$$f(x + y) = f(x)f(y)$$
 for all $x, y \in R$

$$f(0) = f(0)f(0)$$

$$\Rightarrow f(0)\{f(0)-1\}=0$$

$$\Rightarrow f(0) = 1 \qquad [\because f(0) \neq 1]$$

Now,

$$f'(0) = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(h)-1}{h} = 2 \quad [\because f(0) = 1] \quad \dots(i)$$

$$\therefore f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} \quad [\because f(x+y)]$$

$$\Rightarrow f'(x) = f(x) \left\{ \lim_{h \to 0} \frac{f(h) - 1}{h} \right\} = 2f(x) \quad \text{[Using (i)]}$$

$$f(x) = \begin{cases} \frac{x^2}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{x^2}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} \frac{x^2}{2} = x, & x > 0 \\ 0, & x = 0 \end{cases}$$

$$\frac{x^2}{-x} = -x, & x < 0$$

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} -x = 0, \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} x = 0$$

So, f(x) is continuous at x = 0. Also, f(x) is

continuous for all other values of x

Hence, f(x) is everywhere continuous

Clearly, Lf'(0) = -1 and Rf'(0) = 1

Therefore, f(x) is not differentiable at x = 0

80 (b)

Since f(x) is continuous at x = 0

$$\lim_{x \to 0} f(x) = f(0) \Rightarrow f(0) = 2$$
 ...(i)

Now, using L' Hospital's rule, we have

$$\lim_{x \to 0} \frac{\int_0^x f(u) \ du}{x} = \lim_{x \to 0} \frac{f(x)}{1}$$

$$= f(0) \quad [\because f(x) \text{ is continuous at } x]$$

$$= 0$$

$$\Rightarrow \lim_{x \to 0} \frac{\int_0^x f(u) \, du}{x} = 2 \qquad \text{[Using (i)]}$$

$$f'(2^{+}) = \lim_{x \to 2^{+}} \left(\frac{f(x) - f(2)}{x - 2} \right)$$
$$= \lim_{x \to 2^{+}} \frac{3x + 4 - (6 + 4)}{x - 2} = \lim_{x \to 2} \frac{3x - 6}{x - 2} = 3$$

Here,
$$f(x) = \begin{cases} \sin x, x > 0 \\ 0, x = 0 \\ -\sin x, x < 0 \end{cases}$$

$$RHD = \lim_{h \to 0} \frac{\sin|0+h| - \sin(0)}{h}$$

RHD=
$$\lim_{h \to 0} \frac{\sin|0+h| - \sin(0)}{h}$$
$$\sin h$$

$$=\lim_{h\to 0} \frac{\sin h}{h} = 1$$

$$= \lim_{h \to 0} \frac{\sin h}{h} = 1$$

$$LHD = \lim_{h \to 0} \frac{\sin|(0-h)| - \sin(0)}{-h}$$

$$=\frac{-\sin h}{h}=-1$$

 \therefore LHD \neq RHD at x = 0

f(x) is not derivable at x = 0

Alternate

It is clear from the graph that f(x) is not differentiable at x = 0

84 (b)

We have,

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} (\log_e a)^n$$

$$\Rightarrow f(x) = \sum_{n=0}^{\infty} \frac{(x \log_e a)^n}{n!} = \sum_{n=0}^{\infty} \frac{(\log_e a^x)^n}{n!}$$

 $\Rightarrow f(x) = e^{\log_e a^x} = a^x$, which is everywhere continuous and differentiable

85 (c)

$$f(x) = [x] \cos \left[\frac{2x - 1}{2} \right] \pi$$

Since, [x] is always discontinuous at all integer value, hence f(x) is discontinuous for all integer value

86 (c)

The function f is clearly continuous for |x| > 1We observe that

$$\lim_{x \to -1^+} f(x) = 1, \lim_{x \to -1^-} f(x) = \frac{1}{4}$$

$$\lim_{x \to -1^{+}} f(x) = 1, \lim_{x \to -1^{-}} f(x) = \frac{1}{4}$$
Also, $\lim_{x \to \frac{1+}{n}} f(x) = \frac{1}{n^{2}}$ and, $\lim_{x \to \frac{1-}{n}} f(x) = \frac{1}{(n+1)^{2}}$

Thus, f is discontinuous for $x = \pm \frac{1}{n}$, n = 1, 2, 3, ...

Since,
$$|f(x) - f(y)| \le (x - y)^2$$

$$\Rightarrow \lim_{x \to y} \frac{|f(x) - f(y)|}{|x - y|} \le \lim_{x \to y} |x - y|$$

$$\Rightarrow |f'(y)| \leq 0$$

$$\Rightarrow f'(y) = 0$$

$$\Rightarrow f(y) = \text{constant}$$

$$\Rightarrow f(y) = 0 \Rightarrow f(1) = 0 \quad [\because f(0) = 0, \text{ given}]$$

88 (b)

Since $\phi(x) = 2x^3 - 5$ is an increasing function on (1, 2) such that $\phi(1) = -3$ and $\phi(2) = 11$ Clearly, between -3 and 11 there are thirteen points where $f(x) = [2x^3 - 5]$ is discontinuous

89 (c)

Clearly,
$$[x^2 + 1]$$
 is discontinuous at $x = \sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}$

Note that it is right continuous at x = 1 but not left continuous at x = 3

90 (a)

> As is evident from the graph of f(x) that it is continuous but not differentiable at x = 1

$$f''(1^{+}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log_{10}(1 + h) - 0}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log(1 + h)}{h \cdot \log_{e} 10} = \frac{1}{\log_{e} 10} = \log_{10} e$$

$$f''(1^{-}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{h}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{\log_{10}(1 - h)}{h} = \lim_{h \to 0} \frac{\log_{e}(1 - h)}{h \log_{e} 10}$$

91 (b)

It can be easily seen from the graph of f(x) = $|\cos x|$ that it is everywhere continuous but not differentiable at odd multiples of $\pi/2$

92

We have,

$$\lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} f(4 - h) = \lim_{h \to 0} \frac{4 - h - 4}{|4 - h - 4|} + a$$

$$\Rightarrow \lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} -\frac{h}{h} + a = a - 1$$

$$\Rightarrow \lim_{x \to 4^{-}} f(x) = \lim_{h \to 0} f(4+h) = \lim_{h \to 0} \frac{4+h-4}{|4+h-4|} + b$$

$$= h+1$$

and,
$$f(4) = a + b$$

Since f(x) is continuous at x = 4. Therefore,

$$\lim_{x \to 4^{-}} f(x) = f(4) = \lim_{x \to 4^{+}} f(x)$$

$$\Rightarrow a-1=a+b=b+1 \Rightarrow b=-1$$
 and $a=1$

93 (b)

We have,

$$f(x) = \begin{cases} \frac{2^{x} - 1}{\sqrt{1 + x} - 1}, -1 \le x < \infty, & x \ne 0 \\ k, & x = 0 \end{cases}$$

Since, f(x) is continuous everywhere

$$\lim_{x \to 0^{-}} f(x) = f(0) \quad ...(i)$$

Now,
$$\lim_{x\to 0^{-}} f(x) = \lim_{h\to 0} \frac{2^{(0-h)}-1}{\sqrt{1+(0-h)}-1}$$

$$= \lim_{h \to 0} \frac{2^{-h} - 1}{\sqrt{1 - h} - 1}$$

$$= \lim_{h \to 0} \frac{-2^{-h} \log_e 2}{\frac{-1}{2\sqrt{1-h}}}$$
 [by L' Hospital's rule]

$$= 2 \lim_{h \to 0} 2^{-h} \log_e 2\sqrt{1 - h}$$

$$= 2 \log_e 2$$

From Eq. (i),

$$f(0) = 2\log_e 2 = \log_e 4$$

95 **(b)**

We have,

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(-h) = \lim_{h \to 0} \frac{e^{-1/h} - 1}{e^{-1/h} + 1} = -1$$

$$\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(h) = \lim_{x \to 0} \frac{e^{1/h} - 1}{e^{1/h} + 1} = \lim_{h \to 0} \frac{e^{-1/h}}{e^{-1/h}}$$

$$\therefore \lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+} f(x)$$

Hence, f(x) is not continuous at x = 0

LHL=
$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} 1 + (2 - h) = 3$$

LHL=
$$\lim_{x\to 2^-} f(x) = \lim_{h\to 0} 1 + (2-h) = 3$$

RHL= $\lim_{x\to 2^+} f(x) = \lim_{h\to 0} 5 - (2+h) = 3$, $f(2) =$

Hence, f is continuous at x = 2

Now,
$$Rf''(2) = \lim_{h \to 0} \frac{f(2+h)-f(2)}{h}$$

Now,
$$Rf''(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$

= $\lim_{h \to 0} \frac{5 - (2+h) - 3}{h} = -1$

$$Lf''(2) = \lim_{h \to 0} \frac{f(2-h) - f(2)}{-h}$$

$$= \lim_{h \to 0} \frac{1 + (2 - h) - 3}{-h} = 1$$

$$\therefore Rf''(2) \neq Lf''(2)$$

 \therefore f is not differentiable at x = 2

Alternate

It is clear from the graph that f(x) is continuous everywhere also it is differentiable everywhere except at x = 2

97 (d)

We have,

$$f(x + y) = f(x)f(y)$$
 for all $x, y \in R$

Putting x = 1, y = 0, we get

$$f(0) = f(1)f(0) \Rightarrow f(0)(1 - f(1)) = 0$$

$$\Rightarrow f(1) = 1 \qquad [\because f(0) \neq 0]$$

Now,

$$f'(1) = 2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = 2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1)f(h) - f(1)}{h} = 2$$

$$\Rightarrow f(1) \lim_{h \to 0} \frac{f(h) - 1}{h} = 2$$

$$\Rightarrow \lim_{h \to 0} \frac{f(h) - 1}{h} = 2 \quad \text{[Using } f(1) = 1\text{]} \quad \dots (i)$$

$$f'(4) = \lim_{h \to 0} \frac{f(4+h) - f(4)}{h}$$

$$\Rightarrow f'(4) = \lim_{h \to 0} \frac{f(4)f(h) - f(4)}{h}$$

$$\Rightarrow f'(4) = \left\{ \lim_{h \to 0} \frac{f(h) - 1}{h} \right\} f(4)$$

$$\Rightarrow f'(4) = 2 f(4) \quad \text{[From (i)]}$$

$$\Rightarrow f'(4) = 2 \times 4 = 8$$

98 (d)

We have,

$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{+}} g(x) = 1 \text{ and } g(1) = 0$$

So, g(x) is not continuous at x = 1 but $\lim_{x \to 1} g(x)$

exists

We have,

$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} [1 - h] = 0$$

$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} [1+h] = 1$$

So, $\lim_{x \to 1} f(x)$ does not exist and so f(x) is not

continuous at x = 1

We have, gof(x) = g(f(x)) = g([x]) = 0, for all

So, *gof* is continuous for all *x*

We have,

$$fog(x) = f(g(x))$$

$$\Rightarrow fog(x) = \begin{cases} f(0), & x \in \mathbb{Z} \\ f(x^2), & x \in \mathbb{R} - \mathbb{Z} \end{cases}$$

$$\Rightarrow fog(x) = \begin{cases} 0, & x \in \mathbb{Z} \\ [x^2], & x \in \mathbb{R} - \mathbb{Z} \end{cases}$$

Which is clearly not continuous

At
$$x = 1$$
,
RHD= $\lim_{h \to 0^+} \frac{f(1+h)-f(1)}{h}$
= $\lim_{h \to 0} \frac{2-(1+h)-(2-1)}{h} = -1$
LHD= $\lim_{h \to 0^-} \frac{f(1-h)-f(1)}{-h}$
= $\lim_{h \to 0} \frac{(1-h)-(2-1)}{-h} = 1$
 \therefore LHD \neq RHD

100 (d)

Given,
$$f(x) = |x| + \frac{|x|}{x}$$

Let $f_1(x) = |x|$, $f_2(x) = \frac{|x|}{x}$
1. LHL= $\lim_{x \to 0^-} f_1(x) = \lim_{x \to 0^-} |x| = 0$

And RHL
$$\lim_{x\to 0^+} f_1(x) = \lim_{x\to 0^+} |x| = 0$$

Here, LHL=RHL=f(0), $f_1(x)$ is continuous

2. LHL=
$$\lim_{x\to 0^-} \frac{|x|}{x} = \lim_{h\to 0} \frac{|0-h|}{0-h} = -1$$

RHL=
$$\lim_{x\to 0^+} \frac{|x|}{x} = \lim_{h\to 0} \frac{|0+h|}{h} = 1$$

 \therefore LHL \neq RHL, $f_2(x)$ is discontinuous

Hence, f(x) is discontinuous at x = 0

101 (a)

From the graph it is clear that f(x) is continuous everywhere but not differentiable at x = 3

Given,
$$f(x) = \begin{cases} \frac{2x-3}{2x-3}, & \text{if } x > \frac{3}{2} \\ \frac{-(2x-3)}{2x-3}, & \text{if } x < \frac{3}{2} \end{cases}$$
$$= \begin{cases} 1, & \text{if } x > \frac{3}{2} \\ -1, & \text{if } x < \frac{3}{2} \end{cases}$$

Now, RHL=
$$\lim_{x \to \frac{3^+}{2}} f(x) = \lim_{x \to \frac{3^+}{2}} 1 = 1$$

And LHL= $\lim_{x \to \frac{3}{2}} f(x) = \lim_{x \to \frac{3}{2}} (-1) = -1$

∵ RHL≠LHI

f(x) is discontinuous at $x = \frac{3}{2}$

103 (c)

Since the functions $(\log t)^2$ and $\frac{\sin t}{t}$ are not defined on (-1, 2). Therefore, the functions in options (a) and (b) are not defined on (-1, 2)

The function $g(t) = \frac{1-t+t^2}{1+t+t^2}$ is continuous on

 $f(x) = \int_0^x \frac{1 - t + t^2}{1 + t + t^2} dt$ is the integral function of g(t)

Therefore, f(x) is differentiable on (-1, 2) such that f'(x) = g(x)

104 (c)

Since,
$$f(x) = \frac{1 - \tan x}{4x - \pi}$$

Now,
$$\lim_{x \to \pi/4} f(x) = \lim_{x \to \pi/4} \left(\frac{1 - \tan x}{4x - \pi} \right)$$
$$\frac{1}{1} - \sec^2 x$$

$$= \lim_{x \to \pi/4} \left(\frac{-\sec^2 x}{4} \right) = -\frac{1}{2}$$

Since, f(x) is continuous at

$$x = \frac{\pi}{4}$$

$$\therefore \lim_{x \to \pi/4} f(x) = f\left(\frac{\pi}{4}\right) = -\frac{1}{2}$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{4 \left(\frac{x}{2}\right)^2} \cdot x = 0$$

Also, f(0) = k

For,
$$\lim_{x\to 0} f(x) = f(0) \implies k = 0$$

106 (a)

We have,

$$f(x) = |x| + |x - 1|$$

$$\Rightarrow f(x) = \begin{cases} -2x + 1, & x < 0 \\ x - x + 1, & 0 \le x < 1 \\ x + x - 1, & x \ge 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} -2x + 1, & x < 0 \\ 1, & 0 \le x < 1 \\ 2x - 1, & x \ge 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} -2x + 1, & x < 0 \\ 1, & 0 \le x < 1 \\ 2x - 1, & x \ge 1 \end{cases}$$

Clearly, $\lim_{x\to 0^-} f(x) = 1 = \lim_{x\to 0^+} f(x)$ and

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$$

So, f(x) is continuous at x = 0, 1

107 (d)

$$f(0) = \lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$$

$$= \lim_{x \to 0} \frac{2 - \frac{\sin^{-1} x}{x}}{2 + \frac{\tan^{-1} x}{x}}$$
$$= \frac{2 - 1}{2 + 1} = \frac{1}{3}$$
109 **(b)**

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1+h-1}{2(1+h)^2 - 7(1+h) + 5} - \left(\frac{1}{3}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\left(\frac{1}{2h-3} + \frac{1}{3}\right)}{h} = \lim_{h \to 0} \left(\frac{2h}{3h(2h-3)}\right) = -\frac{2}{9}$$

110 (a)

LHL=
$$\lim_{h\to 0} f\left(-\frac{\pi}{2} - h\right) = \lim_{h\to 0} 2\cos\left(-\frac{\pi}{2} - h\right) = 0$$

RHL= $\lim_{h\to 0} f\left(-\frac{\pi}{2} + h\right) = \lim_{h\to 0} 2a\sin\left(-\frac{\pi}{2} + h\right) + b$
= $-a + b$

Since, function is continuous.

$$\therefore$$
 RHL=LHL \Rightarrow $a = b$

From the given options only (a) ie, $(\frac{1}{2}, \frac{1}{2})$ satisfies this condition

111 (a)

We have,

$$f'(0) = 3$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 3$$

$$\Rightarrow \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= 3$$
 [Using: (RHD at $x = 0$) = 3]

$$\Rightarrow \lim_{h \to 0} \frac{f(0)f(h) - f(0)}{h}$$

$$=3 \quad \begin{bmatrix} \because f(x+y) = f(x)f(y) \\ \therefore f(0+h) = f(0)f(h) \end{bmatrix}$$

$$\Rightarrow f(0) \left(\lim_{h \to 0} \frac{f(h) - 1}{h} \right) = 3 \quad \dots(i)$$

Now, f(x + y) = f(x)f(y) for all $x, y \in R$

$$\Rightarrow f(0) = f(0)f(0)$$

$$\Rightarrow f(0)\{1 - f(0)\} = 0 \Rightarrow f(0) = 1$$

Putting f(0) = 1 in (i), we get

$$\lim_{h \to 0} \frac{f(h) - 1}{h} = 3 \qquad ...(ii)$$

$$f'(5) = \lim_{h \to 0} \frac{f(5+h) - f(5)}{h}$$

$$\Rightarrow f'(5) = \lim_{h \to 0} \frac{f(5)f(h) - f(5)}{h}$$

$$\Rightarrow f'(5) = \left\{ \lim_{h \to 0} \frac{f(h) - 1}{h} \right\} f(5) = 3 \times 2 = 6$$

[Using (ii)]

112 (c)

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f(x)' = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h}$$

$$\Rightarrow f(x)' = \lim_{h \to 0} \frac{f(h)}{h}$$

$$\Rightarrow f(x)' = \lim_{h \to 0} \frac{h g(h)}{h} \lim_{h \to 0} g(h) = g(0) \quad [$$

$$\therefore g \text{ is conti. at } x = 0]$$

113 (b)

The domain of f(x) is $[2, \infty)$

We have,

$$f(x) = \sqrt{\frac{\left(\sqrt{2x-4}\right)^2}{2} + 2 + 2\sqrt{2x-4}} + \sqrt{\frac{\left(\sqrt{2x-4}\right)^2}{2} + 2 - 2\sqrt{2x-4}}$$

$$\Rightarrow f(x) = \frac{1}{\sqrt{2}} \sqrt{\left(\sqrt{2x - 4}\right)^2 + 4\sqrt{2x - 4} + 4}$$

$$+\frac{1}{\sqrt{2}}\sqrt{\left(\sqrt{2x-4}\right)^2-4\sqrt{2x-4}+4}$$

$$\Rightarrow f(x) = \frac{1}{\sqrt{2}} \left| \sqrt{2x - 4} + 2 \right| + \frac{1}{\sqrt{2}} \left| \sqrt{2x - 4} - 2 \right|$$

$$\Rightarrow f(x) = \begin{cases} \frac{1}{\sqrt{2}} \times 4, & \text{if } \sqrt{2x - 4} < 2\\ \sqrt{2} \cdot \sqrt{2x - 4}, & \text{if } \sqrt{2x - 4} \ge 2 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 2\sqrt{2}, & \text{if } x \in [2, 4) \\ 2\sqrt{x - 2}, & \text{if } x \in [4, \infty] \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 2\sqrt{x-2}, & \text{if } x \in [4,\infty) \\ 2\sqrt{x-2}, & \text{if } x \in [2,4) \end{cases}$$
Hence, $f'(x) = \begin{cases} 0 & \text{if } x \in [2,4) \\ \frac{1}{\sqrt{x-2}} & \text{if } x \in (4,\infty) \end{cases}$

114 (c)

We have,

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin\left(\frac{1}{x}\right)}{x} = \lim_{x \to 0} x \sin\frac{1}{x} = 0$$

So, f(x) is differentiable at x = 0 such that

$$f'(0) = 0$$

For $x \neq 0$, we have

$$f'(x) = 2x\sin\left(\frac{1}{x}\right) + x^2\cos\left(\frac{1}{x}\right)\left(-\frac{1}{x^2}\right)$$

$$\Rightarrow f'(x) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}$$

$$\Rightarrow \lim_{x \to 0} f'(x) = \lim_{x \to 0} 2x \sin \frac{1}{x} - \lim_{x \to 0} \cos \left(\frac{1}{x}\right)$$
$$= 0 - \lim_{x \to 0} \cos \left(\frac{1}{x}\right)$$

Since $\lim_{x\to 0} \cos\left(\frac{1}{x}\right)$ does not exist

 $\lim_{x \to 0} f'(x)$ does not exist

Hence, f'(x) is not continuous at x = 0

115 (c)

$$f(x) = \begin{cases} \frac{x}{\sqrt{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \\ 0, & x = 0 \end{cases}$$

Clearly, f(x) is not continuous at x =

117 (c)

Given,
$$\lim_{x \to 0} \left[(1 + 3x)^{\frac{1}{x}} \right] = k$$

 $\therefore \quad e^3 = k$

118 (b)

For x > 2, we have

$$f(x) = \int_{0}^{x} \{5 + |1 - t|\} dt$$

$$\Rightarrow f(x) = \int_{0}^{1} \{5 + (1 - t)dt + \int_{1}^{x} (5 - (1 - t)) dt \}$$

$$\Rightarrow f(x) = \int_{0}^{1} (6 - t)dt + \int_{1}^{x} (4 + t)dt$$

$$\Rightarrow f(x) = \left[6t - \frac{t^{2}}{2}\right]_{0}^{1} + \left[4t + \frac{t^{2}}{2}\right]_{1}^{x}$$

$$\Rightarrow f(x) = 1 + 4x + \frac{x^{2}}{2}$$

$$f(x) = \begin{cases} 5x + 1, & \text{if } x \le 2\\ \frac{x^2}{2} + 4x + 1, & \text{if } x > 2 \end{cases}$$

Clearly, f(x) is everywhere continuous and differentiable except possibly at x = 2Now,

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2} 5x + 1 = 11$$
and

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2} \left(\frac{x^2}{2} + 4x + 1 \right) = 11$$

$$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x)$$

So, f(x) is continuous at x = 2

Also, we have (LHD at x = 2) = $\lim_{x \to 2^-} f'(x) =$

 $\lim_{x \to 2} 5 = 5$

119 (b)

The given function is clearly continuous at all points except possibly at $x = \pm 1$

For f(x) to be continuous at x = 1, we must have

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

$$\Rightarrow \lim_{x \to 1} ax^2 + b = \lim_{x \to 1} \frac{1}{|x|}$$

$$\Rightarrow a + b = 1$$
 ...(i)

Clearly, f(x) is differentiable for all x, except possibly at $x = \pm 1$. As f(x) is an even function, so we need to check its differentiability at x = 1 only For f(x) to be differentiable at x = 1, we must

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow \lim_{x \to 1} \frac{ax^{2} + b - 1}{x - 1} = \lim_{x \to 1} \frac{\frac{1}{|x|} - 1}{x - 1}$$

$$\Rightarrow \lim_{x \to 1} \frac{ax^{2} - a}{x - 1} = \lim_{x \to 1} \frac{\frac{1}{x} - 1}{x - 1} \quad [\because a + b = 1]$$

$$\therefore b - 1 = -a$$

$$\Rightarrow \lim_{x \to 1} a(x + 1) = \lim_{x \to 1} \frac{-1}{x}$$

$$\Rightarrow 2a = -1 \Rightarrow a = -1/2$$
Putting $a = -1/2$ in (i), we get $b = 3/2$

120 (c)

At no point, function is continuous

121 (a)

It is clear from the figure that f(x) is continuous everywhere and not differentiable at x = 0 due to sharp edge

122 (c)

$$f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$

$$\times \frac{\sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2}}{\sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2}}$$

$$\times \frac{\sqrt{a + x} + \sqrt{a - x}}{\sqrt{a + x} + \sqrt{a - x}}$$

$$= \lim_{x \to 0} \frac{-2ax(\sqrt{a+x} + \sqrt{a-x})}{2x(\sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2})}$$
$$= \frac{-a(2\sqrt{a})}{(a+a)} = -\sqrt{a}$$

Given,
$$f(x) = \begin{cases} \frac{1-\cos 4x}{8x^2}, & x \neq 0 \\ k & x = 0 \end{cases}$$

LHL= $\lim_{x \to 0^-} f(x)$
= $\lim_{h \to 0} \frac{1-\cos 4(0-h)}{8(0-h)^2}$

$$= \lim_{h \to 0} \frac{1 - \sin 4h}{8h^2}$$

$$= \lim_{h \to 0} \frac{4 \sin 4h}{16h} = 1 \text{ [by L 'Hospital's rule]}$$

Since, f(x) is continuous at x = 0

$$f(0) = LHL \Rightarrow k = 1$$

124 (d)

Given, $f(x) = |x - 1| + |x - 2| + \cos x$ Since, |x-1|, |x-2| and $\cos x$ are continuous in

f(x) being sum of continuous functions is also continuous

125 (c)

If function f(x) is continuous at x = 0, then $f(0) = \lim_{x \to 0} f(x)$

$$f(0) = k = \lim_{x \to 0} x \sin \frac{1}{x}$$

$$\Rightarrow k = 0 \qquad \left[\because -1 \le \sin \frac{1}{x} \le 1 \right]$$

126 (b)

We have.

$$h(x) = \{f(x)\}^2 + \{g(x)\}^2$$

$$\Rightarrow h'(x) = 2f(x)2f'(x) + 2 g(x) g'(x)$$

$$f'(x) = g(x)$$
 and $f''(x) = -f(x)$
 $\Rightarrow f''(x) = g'(x)$ and $f''(x) = -f(x)$
 $\Rightarrow -f(x) = g'(x)$

Thus, we have

$$f'(x) = g(x)$$
 and $g'(x) = -f(x)$

$$h'(x) = -2 g(x)g'(x) + 2 g(x)g'(x) = 0, \text{ for all } x$$

 $\Rightarrow h(x) = \text{Constant for all } x$

But, h(5) = 11. Hence, h(x) = 11 for all x

127 (a)

$$f(x) = |x|^3 = \begin{cases} 0, & x = 0 \\ x^3, & x > 0 \\ -x^3, & x < 0 \end{cases}$$

Now,
$$Rf'(0) = \lim_{h \to 0} \frac{h^3 - 0}{h} = 0$$

And
$$Lf'(0) = \lim_{h \to 0} \frac{-h^3 - 0}{-h} = 0$$

$$\therefore Rf'(0) = Lf'(0) = 0$$

f'(0) = 0

128 (b)

We have,

(LHL at
$$x = 0$$
) = $\lim_{n \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h)$

$$\Rightarrow (LHL \text{ at } x = 0) = \lim_{n \to 0} \sin^{-1}(\cos (-h))$$
$$= \lim_{h \to 0} \sin^{-1}(\cosh h)$$

$$\Rightarrow$$
 (LHL at $x = 0$) = $\sin^{-1} 1 = \pi/2$

$$(RHL at x = 0) = \lim_{x \to 0^+} f(x)$$

$$\Rightarrow (RHL \text{ at } x = 0) = \lim_{h \to 0} f(0+h)$$
$$= \lim_{h \to 0} \sin^{-1}(\cos h)$$

$$\Rightarrow$$
 (RHL at $x = 0$) = $\sin^{-1}(1) = \pi/2$

and,
$$f(0) = \sin^{-1}(\cos 0) = \sin^{-1}(1) = \pi/2$$

$$\therefore$$
 (LHL at $x = 0$) = (RHL at $x = 0$) = $f(0)$

So, f(x) is continuous at x = 0

$$f'(x) = \frac{-\sin x}{\sqrt{1 - \cos^2 x}} = \frac{\sin x}{|\sin x|}$$

$$= \begin{cases} \frac{-\sin x}{-\sin x} = 1, x < 0\\ \frac{-\sin x}{\sin x} = -1, x > 0 \end{cases}$$

 \therefore (LHD at x = 0) = 1 and (RHD at x = 0) = -1

Hence, f(x) is not differentiable at x = 0

129 (d)

For any $x \neq 1, 2$, we find that f(x) is the quotient of two polynomials and a polynomial is everywhere continuous. Therefore, f(x) is continuous for all $x \neq 1, 2$

Continuity at x = 1:

We have,

$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1 - h)$$

$$\Rightarrow \lim_{x \to 1^{-}} f(x)$$

$$= \lim_{h \to 0} \frac{(1-h-2)(1-h+2)(1-h+1)(1-h-1)}{|(1-h-1)(1-h-2)|}$$

$$\Rightarrow \lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} \frac{(3-h)(2-h)(-1-h)(-h)}{|(-h)(-1-h)|}$$

$$\Rightarrow \lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} \frac{(3-h)(2-h)h(h+1)}{h(h+1)} = 6$$

$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1+h)$$

$$= \lim_{h \to 0} \frac{(1+h-2)(1+h+2)(1+h+1)(1+h-1)}{|(1+h-1)(1+h-2)|}$$

$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} \frac{(h-1)(3+h)(2+h)(h-1)}{|h(h-1)|}$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{h \to 0} \frac{(h-1)(1+h-2)|}{|h(h-1)|}$$

$$\lim_{x \to 1^{+}} f(x) = -\lim_{h \to 0} \frac{(h-1)(3+h)(2+h)(h)}{|h(h-1)|}$$

$$\lim_{x \to 1^{+}} f(x) = -\lim_{h \to 0} \frac{(h-1)(3+h)(2+h)h}{h(1-h)} = -6$$

$$\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$$

So, f(x) is not continuous at x = 1

Similarly, f(x) is not continuous at x = 2

130 (b)

Let
$$f(x) = \frac{g(x)}{h(x)} = \frac{x}{1+|x|}$$

It is clear that g(x) = x and h(x) = 1 + |x| are differentiable on $(-\infty, \infty)$ and $(-\infty, 0) \cup (0, \infty)$ respectively

Thus, f(x) is differentiable on $(-\infty, 0)$ U $(0, \infty)$. Now, we have to check the differentiable at

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{x}{1 + |x|} - 0}{x} = \lim_{x \to 0} \frac{1}{1 + |x|}$$

$$= 1$$

Hence, f(x) is differntaible on $(-\infty, \infty)$

At
$$x = 0$$
,

LHL=
$$\lim_{h\to 0} \frac{1}{1-e^{-1/(0-h)}} = \lim_{h\to 0} \frac{1}{1-e^{1/h}} = 0$$

RHL=
$$\lim_{h\to 0} \frac{1}{1-e^{-1/(0+h)}} = \lim_{h\to 0} \frac{1}{1-e^{-1/h}} = 1$$

 \therefore FUnction is not continuous at x = 0

132 (a)

We have,

$$f \circ g = I$$

$$\Rightarrow f \circ g(x) = x \text{ for all } x$$

$$\Rightarrow f'(g(x))g'(x) = 1 \text{ for all } x$$

$$\Rightarrow f'(g(a)) = \frac{1}{g'(a)} = \frac{1}{2} \Rightarrow f'(b)$$
$$= \frac{1}{2} \quad [\because f(a) = b]$$

133 (a)

Since,
$$\lim_{x\to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{\sin \pi x}{5x} = k$$

$$\Rightarrow (1)\frac{\pi}{5} = k \Rightarrow k = \frac{\pi}{5} \quad \left[\because \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]$$

134 (d)

Given,
$$f(x) = [x], x \in (-3.5, 100)$$

As we know greatest integer is discontinuous on integer values.

In given interval, the integer values are

(-3, -2, -1, 0, ..., 99)

: Total numbers of integers are 103.

135 (a)

LHL=
$$\lim_{h\to 0} f(0-h)$$

= $\lim_{h\to 0} \frac{e^{-1/h}-1}{e^{-1/h}+1} = -1$ [: $\lim_{h\to 0} \frac{1}{e^{1/h}} = 0$]

RHL=
$$\lim_{h\to 0} f(0+h) = \lim_{h\to 0} \frac{e^{1/h}-1}{e^{1/h}+1}$$

$$= \lim_{h \to 0} \frac{1 - \frac{1}{e^{1/h}}}{1 + \frac{1}{e^{1/h}}} = 1$$

∴ LHL≠RHL

So, limit does not exist at x = 0

136 (d)

$$f(x) = x^4 + \frac{x^4}{1 + x^4} + \frac{x^4}{(1 + x^4)} + \cdots$$

$$\Rightarrow f(x) = \frac{x^4}{1 - \frac{1}{1 + x^4}} = 1 + x^4, \text{if } x \neq 0$$

Clearly, f(x) = 0 at x = 0

Thus, we have

$$f(x) = \begin{cases} 1 + x^4, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Clearly, $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = 1 \neq f(0)$

So, f(x) is neither continuous nor differentiable at x = 0

137 (a)

We have,

$$f(x) = \begin{cases} 1 + x, & 0 \le x \le 2 \\ 3 - x, & 2 < x \le 3 \end{cases}$$

$$\therefore g(x) = fof(x)$$

$$\Rightarrow f(x) = f(f(x))$$

$$\Rightarrow g(x) = \begin{cases} f(1+x), & 0 \le x \le 2\\ f(3-x), & 2 < x \le 3 \end{cases}$$

$$\Rightarrow g(x) = \begin{cases} f(1+x), & 0 \le x \le 2 \\ f(3-x), & 2 < x \le 3 \end{cases}$$

$$\Rightarrow g(x) = \begin{cases} 1 + (1+x), & 0 \le x \le 1 \\ 3 - (1+x), & 1 < x \le 2 \\ 1 + (3-x), & 2 < x \le 3 \end{cases}$$

$$\Rightarrow g(x) = \begin{cases} 2 + x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \\ 4 - x, & 2 < x \le 3 \end{cases}$$
Clearly, (2) is expected in (2) 1 to (3)

$$\Rightarrow g(x) = \begin{cases} 2 + x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \\ 4 - x, & 2 < x \le 3 \end{cases}$$

Clearly, g(x) is continuous in $(0,1) \cup (1,2) \cup$

(2,3) except possibly at x=0,1,2 and 3

We observe that

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (2 + x) = 2 = g(0)$$

and
$$\lim_{x\to 3^{-}} g(x) = \lim_{x\to 3^{-}} 4 - x = 1 = g(3)$$

Therefore, g(x) is right continuous at x = 0 and

left continuous at x = 3

At x = 1, we have

$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} 2 + x = 3$$

and,
$$\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} 2 - x = 1$$

$$\therefore \lim_{x \to 1^+} g(x) \neq \lim_{x \to 1^-} g(x)$$

So, g(x) is not continuous at x = 1

At x = 2, we have

$$\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} (2 - x) = 0$$

and,

$$\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} (4 - x) = 0$$

$$\therefore \lim_{x \to 2^-} g(x) \neq \lim_{x \to 2^+} g(x)$$

So, g(x) is not continuous at x = 2

Hence, the set of points of discontinuity of g(x) is

138 (b)

Since g(x) is the inverse of function f(x)

$$gof(x) = I(x)$$
, for all x

Now,
$$gof(x) = I(x)$$
, for all x

$$\Rightarrow gof(x) = x$$
, for all x

$$\Rightarrow (gof)'(x) = 1$$
, for all x

$$\Rightarrow g'(f(x))f'(x) = 1$$
, for all x [Using Chain Rule]

$$\Rightarrow g'(f(x)) = \frac{1}{f'(x)}$$
, for all x

$$\Rightarrow g'(f(c)) = \frac{1}{f'(c)}$$
 [Putting $x = c$]

139 (d)

Given,
$$f(x) = \begin{cases} x^p \cos\left(\frac{1}{x}\right), x \neq 0 \\ 0, x = 0 \end{cases}$$

Since, f(x) is differentiable at x = 0, therefore it is continuous at x = 0

$$\lim_{x\to 0} f(x) = f(0) = 0$$

$$\Rightarrow \lim_{x \to 0} x^p \cos\left(\frac{1}{x}\right) = 0 \Rightarrow p > 0$$

As f(x) is differentiable at x = 0

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$
 exists finitely

$$\Rightarrow \lim_{x \to 0} \frac{x^p \cos^{\frac{1}{x}} - 0}{x}$$
 exists finitely

$$\Rightarrow \lim_{x \to 0} x^{p-1} \cos \frac{1}{x} - 0$$
 exists finitely

$$\Rightarrow$$
 $p-1>0$ \Rightarrow $p>1$

140 (a)

It is clear from the graph that f(x) is continuous everywhere and also differentiable everywhere except at x=0

141 (c)

We know that the function

$$\phi(x) = (x - a)^2 \sin\left(\frac{1}{x - a}\right)$$

Is continuous and differentiable at x=a whereas the function $\Psi(x)=|x-a|$ is everywhere continuous but not differentiable at x=aTherefore, f(x) is not differentiable at x=1

142 (d)

$$\lim_{x \to 0} \frac{2^x - 2^{-x}}{x} = \lim_{x \to 0} 2^x \log 2 + 2^{-x} \log 2$$

[by L' Hospital's rule]

= log 4

Since, the function is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x) \Rightarrow f(0) = \log 4$$

143 (a)

As is evident from the graph of f(x) that it is continuous but not differentiable at x = 1

Now.

$$f''(1^{+}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log_{10}(1+h) - 0}{h}$$

$$\Rightarrow f''(1^{+}) = \lim_{h \to 0} \frac{\log(1+h)}{h \cdot \log_{e} 10} = \frac{1}{\log_{e} 10} = \log_{10} e$$

$$f''(1^{-}) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{h}$$

$$\Rightarrow f''(1^{-}) = \lim_{h \to 0} \frac{\log_{10}(1-h)}{h} = \lim_{h \to 0} \frac{\log_{e}(1-h)}{h \log_{e} 10}$$

$$= -\log_{10} e$$

144 (a)

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h} \quad [\because f(x+y) = f(x) + f(y)]$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sinh g(h)}{h} = \lim_{h \to 0} \frac{\sinh h}{h} \lim_{h \to 0} g(h)$$

$$= g(0) = k$$

145 (a)

We have,

$$f(x) = |x| + |x - 1| = \begin{cases} -2x + 1, & x < 0 \\ 1, & 0 \le x < 1 \\ 2x - 1, & 1 \le x \end{cases}$$
Clearly, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} 1 = 1$, $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} (2x - 1) = 1$
and, $f(1) = 2 \times 1 - 1 = 1$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$
So, $f(x)$ is continuous at $x = 1$

Now,
$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{f(1 - h) - f(1)}{-h} = \lim_{h \to 0} \frac{1 - 1}{-h} = 0$$

and,

$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$\Rightarrow \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{h \to 0} \frac{2(1 + h) - 1 - 1}{h} = 2$$

 $\therefore (LHD \text{ at } x = 1) \neq (RHD \text{ at } x = 1)$

So, f(x) is not differentiable at x = 1

146 (d)

The given function is differentiable at all points except possibly at x = 0

Now,

(RHD at x = 0)

$$= \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{h+1} - 1}{h^{3/2}}$$

$$= \lim_{h \to 0} \frac{h}{h^{3/2}(\sqrt{h+1} + 1)} = \lim_{h \to 0} \frac{1}{\sqrt{h}(\sqrt{h+1} + 1)}$$

So, the function is not differentiable at x = 0Hence, the required set is $R - \{0\}$

147 (a)

We have,

$$f(x) f(y) = f(x) + f(y) + f(xy) - 2$$

$$\Rightarrow f(x) \cdot f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) + f(1) - 2$$

$$\Rightarrow f(x) \cdot f\left(\frac{1}{x}\right)$$

$$= f(x)$$

$$+ f\left(\frac{1}{x}\right) \quad \begin{bmatrix} \because f(1) = 2 \text{ (Putting } x = y = 1 \\ \text{ in the given relation)} \end{bmatrix}$$

$$\Rightarrow f(x) = x^{n} + 1$$

$$\Rightarrow f(2) = 2^{n} + 1$$

$$\Rightarrow 5 = 2^{n} + 1 \quad [\because f(2) = 5 \text{ (given)}]$$

$$\Rightarrow n = 2$$

 $f(x) = x^2 + 1 \Rightarrow f(3) = 10$

148 (b)

We have,

$$f(x) = \frac{1}{2}x - 1, \text{ for } 0 \le x \le \pi$$

$$\therefore \{f(x)\} = \begin{cases} -1, \text{ for } 0 \le x < 2 \\ 0, \text{ for } 2 \le x \le \pi \end{cases}$$

$$\Rightarrow \tan[f(x)] = \begin{cases} \tan(-1) = -\tan(1), 0 \le x < 2 \\ \tan 0 = 0, 2 \le x \le \pi \end{cases}$$

It is evident from the definition of tan[f(x)] that $\lim_{x\to 2^-} tan[f(x)] = -tan 1$ and, $\lim_{x\to 2^+} tan[f(x)] = 0$ So, tan[f(x)] is not continuous at x=2

Now,

$$f(x) = \frac{1}{2}x - 1 \Rightarrow f(x) = \frac{x - 2}{2} \Rightarrow \frac{1}{f(x)} = \frac{2}{x - 2}$$

Clearly, f(x) is not continuous at x = 3

So, tan[f(x)] and $tan\left[\frac{1}{f(x)}\right]$ both are discontinuous at x=2

149 (c)

$$\lim_{x \to 0} (1+x)^{\cot x} = \lim_{x \to 0} \left\{ (1+x)^{\frac{1}{x}} \right\}^{x \cot x}$$

$$= \lim_{x \to 0} e^{x \cot x} = e$$

Since f(x) is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x) = e$$

150 (b)

LHL=
$$\lim_{h\to 0} f\left(\frac{\pi}{4} - h\right)$$

= $\lim_{h\to 0} \frac{\tan\left(\frac{\pi}{4} - h\right) - \cot\left(\frac{\pi}{4} - h\right)}{\frac{\pi}{4} - h - \frac{\pi}{4}}$
= $\lim_{h\to 0} \frac{-\sec^2\left(\frac{\pi}{4} - h\right) - \csc^2\left(\frac{\pi}{4} - h\right)}{-1} = 4$

[by L 'Hospital's rule]

Since, f(x) is continuous at $x = \frac{\pi}{4}$, then LHL=

$$f\left(\frac{\pi}{4}\right)$$

$$a = 4$$

151 **(a)**

If
$$-1 \le x < 0$$
, then
$$f(x) = \int_{-1}^{x} |t| dt = \int_{-1}^{x} -t dt = -\frac{1}{2}(x^{2} - 1)$$

If r > 0 then

$$f(x) = \int_{-1}^{0} -t \, dt + \int_{-1}^{x} -t \, dt = \frac{1}{2}(x^2 + 1)$$

$$f(x) = \begin{cases} -\frac{1}{2}(x^2 - 2), & -1 \le x < 0 \\ \frac{1}{2}(x^2 + 1), & 0 \le x \end{cases}$$

It can be easily seen that f(x) is continuous at x = 0

So, it is continuous for all x > -1

Also,
$$Rf'(0) = 0 = Lf'(0)$$

So, f(x) is differentiable at x = 0

$$f'(x) = \begin{cases} -x, & -1 < x = 0 \\ 0, & x = 0 \\ x, & x > 0 \end{cases}$$

Clearly, f'(x) is continuous at x = 0

Consequently, it is continuous for all x > -1 i.e.

for x + 1 > 0

Hence, f and f' are continuous for x + 1 > 0

152 **(c)**

We have,

$$f(x) = \lim_{n \to \infty} \frac{x^{-n} - x^n}{x^{-n} + x^n}$$

$$\Rightarrow f(x) = \lim_{n \to \infty} \frac{1 - x^{2n}}{1 + x^{2n}}$$

$$\Rightarrow f(x) = \begin{cases} \frac{1 - 0}{1 + 0} = 1, & \text{if } -1 < x < 1\\ \frac{1 - 1}{1 + 1} = 0, & \text{if } x = \pm 1\\ \frac{0 - 1}{0 + 1} = -1, & \text{if } |x| > 1 \end{cases}$$
Clearly $f(x)$ is discontinuous at $x = \pm 1$

Clearly, f(x) is discontinuous at $x = \pm 1$

153 (b)

Clearly, $\log |x|$ is discontinuous at x = 0

$$f(x) = \frac{1}{\log |x|}$$
 is not defined at $x = \pm 1$

Hence, f(x) is discontinuous at x = 0, 1, -1

154 (a)

For continuity, $\lim_{x\to 0} f(x) = k$

$$\Rightarrow \lim_{x \to 0} \frac{\sin 3x}{\sin x} = k \Rightarrow \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{3x}{\sin 3x} = k$$
$$\Rightarrow 3 = k$$

155 (b)

Since, the function f(x) is continuous

$$f(0) = RHL f(x) = LHLf(x)$$

Now, RHL
$$f(X) = \lim_{h \to 0} \frac{\log(1+0+h) + \log(1-0-h)}{0+h}$$

= $\lim_{h \to 0} \frac{\log(1+h) + \log(1-h)}{h}$

$$= \lim_{h \to 0} \frac{\frac{1}{1+h} - \frac{1}{1-h}}{1} = 0$$

[by L 'Hospital's rule]

$$f(0) = RHL f(x) = 0$$

156 (d)

$$f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & x < 4 \\ a+b, & x = 4 \\ \frac{x-4}{|x-4|} + b, & x > 4 \end{cases} = \begin{cases} -1+a, & x < 4 \\ a+b \\ 1+b, & x > 4 \end{cases} = \begin{cases} -1+a, & x < 4 \\ 1+b, & x > 4 \end{cases}$$

$$LHL = \lim_{x \to 4^{\mp}} f(x) = a - 1$$

$$RHL = \lim_{x \to 4^{+}} f(x) = 1 + b$$

Since, LHL=RHL= f(4)

$$\Rightarrow a-1=a+b=b+1$$

a = 1 and b = -1

163 (a)

$$f(x) = \begin{cases} \tan x, & 0 \le x \le \pi/4\\ \cot x, & -\pi/4 \le x \le \pi/2\\ \tan x, & \pi/2 < x \le 3\pi/4\\ \cot x, & 3\pi/4 \le x < \pi \end{cases}$$

157 (d)

$$f(x) = \begin{cases} \frac{-1}{x-1}, & 0 < x < 1\\ \frac{1-1}{x-1} = 0, & 1 < x < 2\\ 0, & x = 1 \end{cases}$$
Clearly, $\lim_{x \to 1^{-}} f(x) \to -\infty$ and $\lim_{x \to 1^{+}} f(x) = 0$

So, f(x) is not continuous at x = 1 and hence it is not differentiable at x = 1

$$\lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{1 - \sqrt{2}\sin x}{\pi - 4x}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{-\sqrt{2}\cos x}{4} = \frac{1}{4} \quad \text{[by L 'Hospital's rule]}$$

Since, f(x) is continuous at $x = \frac{\pi}{4}$

$$\therefore \lim_{x \to \frac{\pi}{4}} f(x) = f\left(\frac{\pi}{4}\right) \quad \Rightarrow \ \frac{1}{4} = a$$

159 (d)

LHL=
$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} 1 - h + a = 1 + a$$

RHL=
$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} 3 - (1+h)^2 = 2$$

For f(x) to be continuous, LHL=RHL

$$\Rightarrow 1 + a = 2 \Rightarrow a = 1$$

160 (b)

LHL=
$$\lim_{h\to 0} \frac{\cos 3(0-h)-\cos(0-h)}{(0-h)^2}$$

= $\lim_{h\to 0} \frac{\cos 3h - \cos h}{h^2}$
= $\lim_{h\to 0} \frac{-3\sin 3h + \sin h}{2h}$
= $\lim_{h\to 0} \frac{-9\cos 3h + \cos h}{2} = \frac{-9+1}{2} = -4$
 $\lim_{x\to 0^-} f(x) = f(0) \implies \lambda = -4$

LHL=
$$\lim_{x \to a^{-}} \frac{x^3 - a^3}{x - a} = \lim_{h \to 0} \frac{(a - h)^3 - a^3}{a - h - a}$$

$$= \lim_{h \to 0} \frac{(a - h - a)\{(a - h)^2 + a^3 + a(a - h)\}}{-h}$$

$$= 3a^2$$

Since, f(x) is continuous at x = a

$$\therefore$$
 LHL = $f(a)$

$$\Rightarrow$$
 $3a^2 = b$

Since $\tan x$ and $\cot x$ are periodic functions with period π . So, f(x) is also periodic with period π It is evident from the graph that f(x) is not continuous at $x = \pi/2$. Since f(x) is periodic with period π . So, it is not continuous at $x = 0, \pm \pi/2, \pm \pi, \neq 3\pi/2$

Also, f(x) is not differentiable $x = \pi/4, 3\pi/4, 5\pi/4$ etc

We have,

$$f(x) = \{|x| - |x - 1\}^2$$

$$\Rightarrow f(x) = \begin{cases} (-x + x - 1)^2, & \text{if } x < 0 \\ (x + x - 1)^2, & \text{if } 0 \le x < 1 \\ (x - x + 1)^2, & \text{if } x \ge 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 1, & \text{if } x < 0 \\ (2x - 1)^2, & \text{if } 0 < x < 1 \\ 1, & \text{if } x \ge 1 \end{cases}$$

$$\Rightarrow f'(x) = \begin{cases} 0, & \text{if } x < 0 \text{ or if } x > 1 \\ 4(2x - 1), & \text{if } 0 < x < 1 \end{cases}$$

165 (b)

We have,

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$\Rightarrow f'(x_0) = \lim_{x \to x_0} \frac{(x - x_0)\phi(x) - 0}{(x - x_0)}$$

$$\Rightarrow f'(x_0) = \lim_{x \to x_0} \phi(x) = \phi(x_0)$$

$$\therefore \phi(x) \text{ is continuous at } x = x_0$$

166 (b)

Since,
$$\lim_{x \to 2^+} f(x) = f(2) = k$$

 $\Rightarrow k = \lim_{h \to 0} f(2+h)$
 $\Rightarrow k = \lim_{h \to 0} \left[(2+h)^2 + e^{\frac{1}{2-(2+h)}} \right]^{-1}$
 $\Rightarrow \lim_{h \to 0} \left[4 + h^2 + 4h + e^{-1/h} \right]^{-1} = \frac{1}{4}$

167 (c)

For f(x) to be continuous at $x = \pi/2$, we must

$$\lim_{x \to \pi/2} f(x) = f(\pi/2)$$

$$\Rightarrow \lim_{x \to \pi/2} \frac{1 - \sin x}{(\pi - 2x)^2} \cdot \frac{\log \sin x}{\log(1 + \pi^2 - 4\pi x + 4x^2)} = k$$
169 (a)
Since $f(x)$ is continuous at $x = 0$

$$\therefore \lim_{x \to 0} f(x) = f(0) = 0$$

$$\Rightarrow \lim_{h \to 0} \frac{1 - \cos h}{4h^2} \times \frac{\log \cos h}{\log(1 + 4h^2)} = k$$

$$\Rightarrow \lim_{h \to 0} \frac{1 - \cos h}{4h^2} \times \frac{\log\{1 + \cos h - 1\}}{\cos h - 1}$$

$$\times \frac{4h^2}{\log(1 + 4h^2)} \times \frac{\cos h - 1}{4h^2} = k$$

$$\Rightarrow -\lim_{h \to 0} \left(\frac{1 - \cos h}{4h^2}\right)^2 \frac{\log(1 + (\cos h - 1))}{\cos h - 1}$$

$$\times \frac{4h^2}{\log(1 + 4h^2)} = k$$

$$\Rightarrow -\lim_{h \to 0} \left(\frac{\sin^2 h/2}{2h^2}\right)^2 \frac{\log(1 + (\cos h - 1))}{\cos h - 1}$$

$$\times \frac{4h^2}{\log(1 + 4h^2)} = k$$

$$\Rightarrow -\frac{1}{64} \lim_{h \to 0} \left(\frac{\sin h/2}{h/2}\right)^4 \frac{\log(1 + (\cos h - 1))}{\cos h - 1}$$

$$\times \frac{4h^2}{\log(1 + 4h^2)} = k$$

$$\Rightarrow -\frac{1}{64} = k$$
68 (c)

LHL= $\lim_{h \to 0} f(0 - h) = \lim_{h \to 0} \frac{\sin 5(0 - h)}{(0 - h)^2 + 2(0 - h)}$

$$= -\lim_{h \to 0} \frac{\sin 5h}{\frac{5}{h}} = \frac{5}{2}$$
Since, it is continuous at $x = 0$, therefore LHL= $f(0)$

$$\Rightarrow \frac{5}{2} = k + \frac{1}{2} \Rightarrow k = 2$$

$$\Rightarrow \lim_{x \to 0} x^n \sin\left(\frac{1}{x}\right) = 0 \Rightarrow n > 0$$

f(x) is differentiable at x = 0, if

 $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ exists finitely

$$\Rightarrow \lim_{x \to 0} \frac{x^n \sin \frac{1}{x} - 0}{x}$$
 exists finitely

$$\Rightarrow \lim_{x\to 0} x^{n-1} \sin\left(\frac{1}{x}\right)$$
 exists finitely

$$\Rightarrow n-1 > 0 \Rightarrow n > 1$$

If $n \le 1$, then $\lim_{x \to 0} x^{n-1} \sin\left(\frac{1}{x}\right)$ does not exist and

hence f(x) is not differentiable at x = 0

Hence f(x) is continuous but not differentiable at x = 0 for $0 < n \le 1$ i.e. $n \in (0, 1]$

170 (b)

Clearly, f(x) is not differentiable at x = 3

Now,
$$\lim_{h \to 3^{-}} f(x) = \lim_{h \to 0} f(3 - h)$$

$$=\lim_{h\to 0} |3-h-3|$$

= 0

$$\lim_{h \to 3^+} f(x) = \lim_{h \to 0} f(3+h)$$

$$=\lim_{h\to 0} |3+h-3|=0$$

and
$$f(3) = |3 - 3| = 0$$

$$f(x)$$
 is continuous at $x = 3$

It can easily be seen from the graphs of f(x) and

that both are continuous at x = 0

Also, f(x) is not differentiable at x = 0 whereas

g(x) is differentiable at x = 0

172 (c)

We have,

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h)$$

$$= \lim_{h \to 0} \frac{-\sin(a+1)h - \sin h}{-h}$$

$$\Rightarrow \lim_{x \to 0^-} f(x) = \lim_{h \to 0} f(0 - h)$$

$$= \lim_{h \to 0} \left\{ \frac{\sin(a+1)h}{h} + \frac{\sin h}{h} \right\}$$

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h) = (a + 1) + 1$$

$$= a + z$$

and,
$$\lim_{x \to 0^+} f(x) = \lim_{h \to 0} f(0+h)$$

$$\Rightarrow \lim_{x \to 0^+} f(x) = \lim_{h \to 0} \frac{\sqrt{h + bh^2} - \sqrt{h}}{b h^{3/2}}$$

$$\Rightarrow \lim_{x \to 0^+} f(x) = \lim_{h \to 0} \frac{h + bh^2 - h}{bh^{3/2}(\sqrt{h + bh^2} - \sqrt{h})}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{1 + bh} + 1} = \frac{1}{2}$$

Since, f(x) is continuous at x = 0. Therefore,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$

$$\Rightarrow a + 2 = \frac{1}{2} = c \Rightarrow c = \frac{1}{2}, a = -\frac{3}{2} \text{ and } b$$

$$\in R - \{0\}$$

173 (c)

For f(x) to be continuous at x = 0, we must have

$$\lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{(9^x - 1)(4^x - 1)}{\sqrt{2} - \sqrt{2\cos^2 x/2}} = k$$

$$\Rightarrow \lim_{x \to 0} \frac{(9^x - 1)(4^x - 1)}{\sqrt{2} \cdot 2\sin^2 x/4} = k$$

$$\Rightarrow \lim_{x \to 0} \frac{16 \times \left(\frac{9^x - 1}{x}\right) \left(\frac{4^x - 1}{x}\right)}{2\sqrt{2} \left(\frac{\sin x/2}{x/4}\right)^2} = k$$

$$\Rightarrow \frac{16}{2\sqrt{2}}\log 9 \cdot \log 4 = k = 4\sqrt{2}\log 9 \cdot \log 4$$

$$= 16\sqrt{2}\log 3\log 2$$

174 (b)

Given,
$$f(x) = [\tan^2 x]$$

Now,
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} [\tan^2 x] = 0$$

And
$$f(0) = [\tan^2 0] = 0$$

Hence, f(x) is continuous at x = 0

175 (b)

Let,
$$f(x) = x$$

Which is continuous at x = 0

Also,
$$f(x + y) = f(x) + f(y)$$

$$\Rightarrow f(0+0) = f(0) + f(0)$$

$$= 0 + 0$$

$$\Rightarrow f(0) = 0$$

$$f(1+0) = f(1) + f(0)$$

$$\Rightarrow f(1) = 1 + 0$$

$$\Rightarrow f(1) = 1$$

As, it satisfies it.

Hence, f(x) is continous for every values of x

176 (c)

Here,
$$gof = \begin{cases} e^{\sin x}, & x \ge 0 \\ e^{1-\cos x}, & x \le 0 \end{cases}$$

$$\therefore \text{ LHD= } \lim \frac{gof(0-h)-gof(h)}{}$$

$$\therefore \text{ LHD} = \lim_{h \to 0} \frac{gof(0-h) - gof(h)}{-h}$$

$$= \lim_{h \to 0} \frac{e^{1 - \cos h} - e^{1 - \cos h}}{-h} = 0$$

$$= \lim_{h \to 0} \frac{-h}{-h}$$

$$= \lim_{h \to 0} \frac{-h}{-h - aof(h)}$$

$$RHD = \lim_{h \to 0} \frac{g(f)(g+h) - g(f)(h)}{h}$$

$$=\lim_{h\to 0}\frac{e^{\sin k}-e^{\sin k}}{h}=0$$

Since, RHD=LHD=0

$$\therefore (gof)'(0) = 0$$

177 (b)

We have,

$$f(x) \begin{cases} (x+1)^{2-\left(\frac{1}{x}+\frac{1}{x}\right)} = (x+1)^2, & x < 0\\ 0, & x = 0\\ (x+1)^{2-\left(\frac{1}{x}+\frac{1}{x}\right)} = (x+1)^{2-\frac{2}{x}}, & x > 0 \end{cases}$$

Clearly, f(x) is everywhere continuous except possibly at x = 0

At x = 0, we have

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x+1)^{2} = 1$$

and,
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0} (x+1)^{2-\frac{2}{x}} = \lim_{x \to 0} (x+1)^{-2/x}$$

$$\Rightarrow \lim_{x \to 0^+} f(x) = e^{\lim_{x \to 0^-} -\frac{2}{x} \log(1+x)} = e^{-2}$$

Clearly,
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x)$$

So, f(x) is not continuous at x = 0

178 (b)

Since f(x) is continuous at x = 0. Therefore,

$$\lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} f(x) = k$$

$$\Rightarrow \lim_{x \to 0} \frac{\log(1 + ax) - \log(1 - bx)}{x} = k$$

$$\Rightarrow a \lim_{x \to 0} \frac{\log(1 + ax)}{ax} - (-b) \lim_{x \to 0} \frac{\log(1 - bx)}{-bx} = k$$

179 (c)

Since f(x) is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x)$$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{(27 - 2x)^{1/3} - 3}{9 - 3(243 + 5x)^{1/5}} \qquad \left[\text{Form } \frac{0}{0} \right]$$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{\frac{1}{3}(27 - 2x)^{-\frac{2}{3}}(-2)}{-\frac{3}{5}(243 + 5x)^{-\frac{4}{5}}(5)}$$

$$=\left(-\frac{2}{3}\right)\left(-\frac{1}{3}\right)\frac{3^4}{3^2}=2$$

180 **(d)**

$$\lim_{x \to 0} \frac{e^{2x} - 1 - 2x}{x(e^{2x} - 1)}$$

$$= \lim_{x \to 0} \frac{2e^{2x} - 2}{(e^{2x} - 1) + 2xe^{2x}}$$
 [using L 'Hospital rule]

$$= \lim_{x \to 0} \frac{4e^{2x}}{4e^{2x} + 4xe^{2x}} = 1 \quad [using L'Hospital's rule]$$

Since, f(x) is continuous at x = 0, then

$$\lim_{x \to 0} f(x) = f(0) \quad \Rightarrow \quad 1 = f(0)$$

181 (b)

If a function f(x) is continuous at x = a, then it may or may not be differentiable at x = a

: Option (b) is correct

182 (c)

Let
$$f(x) = |x - 1| + |x - 3|$$

= $\begin{cases} x - 1 + x - 3, & x \ge 3 \\ x - 1 + 3 - x, & 1 \le x < 3 \\ 1 - x + 3 - x, & x \le 1 \end{cases}$

$$= \begin{cases} 2x - 4, x \ge 3 \\ 2, 1 \le x < 3 \\ 4 - 2x, x \le 1 \end{cases}$$

At x = 2, function is

$$f(x)=2$$

$$\Rightarrow f'(x) = 0$$

183 (d)

We have,

$$f(x) = \begin{cases} (x+1) e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x+1), & x < 0\\ (x+1) e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = (x+1)e^{-2/x}, & x > 0 \end{cases}$$

Clearly, f(x) is continuous for all $x \neq 0$

So, we will check its continuity at x = 0

We have,

(LHL at
$$x = 0$$
) = $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} (x + 1) = 1$

(RHL at
$$x = 0$$
) = $\lim_{x \to 0^+} f(x) = \lim_{x \to 0} (x+1) e^{-2/x}$
= $\lim_{x \to 0} \frac{x+1}{e^{2/x}} = 0$

$$\therefore \lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+ f(x)}$$

So, f(x) is not continuous at x = 0

Also, f(x) assumes all values from f(-2) to f(2)

and f(2) = 3/e is the maximum value of f(x)

Since, it is a polynomial function, so it is

continuous for every value of x except at x = 2

$$LHL = \lim_{x \to 2^{-}} x - 1$$

$$= \lim_{h \to 0} 2 - h - 1 = 1$$

RHL=
$$\lim_{x \to 2^{+}} 2x - 3 = \lim_{h \to 0} 2(2+h) - 3 = 1$$

And
$$f(2) = 2(2) - 3 = 1$$

$$\therefore$$
 LHL+RHL= $f(2)$

Hence, f(x) is continuous for all real values of x

185 (c)

Continuity at x = 0

$$\begin{aligned} \text{LHL} &= \lim_{x \to 0^{-}} \frac{\tan x}{x} = \lim_{h \to 0} \frac{-\tan h}{-h} = 1 \\ \text{RHL} &= \lim_{x \to 0^{+}} \frac{\tan x}{x} = \lim_{h \to 0} \frac{\tan h}{h} = 1 \end{aligned}$$

$$RHL = \lim_{x \to 0^+} \frac{\tan x}{x} = \lim_{h \to 0} \frac{\tan h}{h} = 1$$

 \therefore LHL=RHL= f(0) = 1, it is continuous

Differentiability at x = 0

LHD=
$$\lim_{h\to 0} \frac{f(0-h)-f(0)}{-h} = \lim_{h\to 0} \frac{\frac{\tan(-h)}{-h}-1}{-h}$$

= $\lim_{h\to 0} \frac{+\frac{h^2}{3} + \frac{2h^4}{15} + \dots}{-h} = 0$

RHD=
$$\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{\frac{\tan h}{h}-1}{h}$$

= $\lim_{h\to 0} \frac{\frac{h^2}{3} + \frac{2h^4}{15} + \cdots}{-h} = 0$

∴ LHD=RHI

Hence, it is differentiable.

We have,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} (x - 1) = 0$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1} (x^3 - 1) = 0. \text{ Also, } f(1) = 1 - 1$$

So, f(x) is continuous at x = 1

Clearly, (f'(1)) = 3 and Rf'(1) = 1

Therefore, f(x) is not differentiable at x = 1

187 (d)

$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - x} = 1, & \text{if } x < 0 \text{ or } x > 1 \\ -\frac{(x^2 - x)}{x^2 - x} = -1, & \text{if } 0 < x < 1 \\ 1, & \text{if } x = 0 \\ -1, & \text{if } x = 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 1, & \text{if } x \le 0 \text{ or } x > 1 \\ -1, & \text{if } 0 < x \le 1 \end{cases}$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} 1 = 1 \text{ and, } \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} -1 = -1$$

Clearly,
$$\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$$

So, f(x) is not continuous at x = 0. It can be easily 194 (c) seen that it is not continuous at x = 1

188 (b)

We have.

$$f(x) = |x - 1| + |x - 3|$$

$$\Rightarrow f(x) = \begin{cases} -(x - 1) - (x - 3), & x < 1 \\ (x - 1) - (x - 3), & 1 \le x < 3 \\ (x - 1) + (x - 3), & x \ge 3 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} -2x + 4, & x < 1 \\ 2, & 1 \le x < 3 \\ 2x - 4, & x \ge 3 \end{cases}$$

Since, f(x) = 2 for $1 \le x < 3$. Therefore f'(x) =0 for all $x \in (1,3)$

Hence, f'(x) = 0 at x = 2

189 (d)

We have,

$$Lf'(0) = 0$$
 and $Rf'(0) = 0 + \cos 0^{\circ} = 1$
 $\therefore Lf'(0) \neq Rf'(0)$

Hence, f'(x) does not exist at x = 0

190 (c)

Given,
$$g(x) = \frac{(x-1)^n}{\log \cos^m(x-1)}$$
; $0 < x < 2$, $m \ne \infty$

0,
$$n$$
 are integers and $|x-1| = \begin{cases} x-1; & x \ge 1\\ 1-x; & x < 1 \end{cases}$

The left hand derivative of |x - 1| at x = 1 is p =

Also,
$$\lim_{x \to 1^+} g(x) = p = -1$$

$$\Rightarrow \lim_{h \to 0} \frac{(1+h-1)^n}{\log \cos^m (1+h-1)} = -1$$
$$\Rightarrow \lim_{h \to 0} \frac{h^n}{m \log \cos h} = -1$$

$$\Rightarrow \lim_{h\to 0} \frac{h^n}{m\log \cos h} = -1$$

$$\Rightarrow \lim_{h \to 0} \frac{n \cdot h^{n-1}}{m \cdot \frac{1}{\cos h} (-\sin h)} = -1$$

[using L 'Hospital's rule]

$$\Rightarrow \left(\frac{n}{m}\right) \lim_{h \to 0} \frac{h^{n-2}}{\left(\frac{\tan h}{h}\right)} = 1$$

$$\Rightarrow n = 2 \text{ and } \frac{n}{m} = 1$$

$$\Rightarrow m = n = 2$$

Given,
$$f(x) = \frac{2x^2+7}{(x^2-1)(x+3)}$$

Since, at $x = 1, -1, -3, f(x) = \infty$

Hence, function is discontinuous

193 (a)

LHL=
$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} [1 - (1 - h)^{2}] = 0$$

RHL=
$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} \{1 + (1+h)^2\} = 2$$

Also,
$$f(1) = 0$$

$$\Rightarrow$$
 RHL \neq LHL = $f(1)$

Hence, f(x) is not continuous at x = 1

It is clear from the graph that minimum f(x) is

$$f(x) = x + 1, \quad \forall x \in R$$

Hence, it is a straight line, so it is differentiable everywhere

Since, f(x) is continuous at $x = \frac{n}{2}$

$$\lim_{x \to \frac{\pi^{-1}}{2}} (mx + 1) = \lim_{x \to \frac{\pi^{+}}{2}} (\sin x + n)$$

$$\Rightarrow m\frac{\pi}{2} + 1 = \sin \frac{\pi}{2} + n$$

196 (a)

This function is continuous at x = 0, then

$$\lim_{x \to 0} \frac{\log_{e}(1 + x^{2} \tan x)}{\sin x^{3}} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{\log_{e}\left\{1 + x^{2}\left(x + \frac{x^{3}}{3} + \dots\right)\right\}}{x^{9} + x^{15}} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{\log_{e}(1+x^{3})}{x^{3} - \frac{x^{9}}{3!} + \frac{x^{15}}{5!} - \dots} = f(0)$$

[neglecting higher power of x in $x^2 \tan x$]

$$\Rightarrow \lim_{x \to 0} \frac{x^3 - \frac{x^6}{2} + \frac{x^9}{3} - \dots}{x^3 + \frac{x^9}{3!} + \frac{x^{15}}{5!} - \dots} = f(0)$$

$$\Rightarrow 1 = f(0)$$

197 (a)

Given, f(x) is continuous at x = 0

: Limit must exist

ie,
$$\lim_{x \to 0} x^p \sin \frac{1}{x} = (0)^p \sin \infty = 0$$
, when, $0 ...(i)$

Now, RHD=
$$\lim_{h\to 0} \frac{h^p \sin\frac{1}{h} - 0}{h} = \lim_{h\to 0} h^{p-1} \sin\frac{1}{h}$$

LHD= $\lim_{h\to 0} \frac{(-h)^p \sin(-\frac{1}{h}) - 0}{-h}$
= $\lim_{h\to 0} (-1)^p h^{p-1} \sin\frac{1}{h}$

Since, f(x) is not differentiable at x = 0

 $p \le 1$...(ii)

From Eqs.(i) and (iii), 0

198 (a)

We have,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin x^2}{x} = \lim_{x \to 0} \left(\frac{\sin x^2}{x^2} \right) x = 1 \times 0$$
$$= 0 = f(0)$$

So, f(x) is continuous at x = 0. f(x) is also derivable at x = 0, because

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sin x^2}{x} = \lim_{x \to 0} \frac{\sin x^2}{x^2} = 1 \text{ exists}$$
 finitely

199 (a)

A function f on R into itself is continuous at a point a in R, iff for each \in > 0 there exist δ > 0, such that

$$|f(x) - f(a)| < \in \Rightarrow |x - a| < \delta$$

200 (a)

We have,

$$f(x) = x - |x - x^{2}|, \quad -1 \le x \le 1$$

$$\Rightarrow f(x) = \begin{cases} x + x - x^{2}, & -1 \le x < 0 \\ x - (x - x^{2}), & 0 \le x \le 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 2x - x^{2}, & -1 \le x < 0 \\ x^{2}, & 0 \le x \le 1 \end{cases}$$

Clearly, f(x) is continuous at x = 0

Also.

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1} 2x - x^2 = -2 - 1 = -3$$
$$= f(-1)$$

and.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} = 1 = f(1)$$

So, f(x) is right continuous at x = -1 and left continuous at x = 1

Hence, f(x) is continuous on [-1, 1]

201 **(b)**

Since $|\sin x|$ and $|e^{|x|}$ are not differentiable at x=0. Therefore, for f(x) to be differentiable at x=0, we must have a=0,b=0 and c can be any real number

202 (a)

We have,

$$f(u+v) = f(u) + kuv - 2v^{2} \text{ for all } u, v \in R$$
...(i)

Putting u = v = 1, we get

$$f(2) = f(1) + k - 2 \Rightarrow 8 = 2 + k - 2 \Rightarrow k = 8$$

Putting u = x, v = h in (i), we get

$$\frac{f(x+h) - f(x)}{h} = kx - 2h$$

$$\Rightarrow \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = kx \Rightarrow f'(x)$$

$$=8x \quad [\because k=8]$$

203 (b)

Given,
$$f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

$$\Rightarrow f'(x) = \frac{1}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}} \times \frac{d}{dx} \left(\frac{2x}{1+x^2}\right)$$

$$= \frac{1+x^2}{\sqrt{(1+x^2)^2}} \times \frac{2(1-x^2)}{(1+x^2)^2}$$

$$= \frac{2}{1+x^2} \times \frac{1-x^2}{|1-x^2|} = \begin{cases} \frac{2}{1+x^2}, & \text{if } |x| < 1\\ \frac{2}{1+x^2}, & \text{if } |x| > 1 \end{cases}$$

f'(x) does not exist for |x| = i, ie, $x = \pm 1$ Hence, f(X) is differentiable on $R - \{-1, 1\}$

204 (a)

LHL=
$$\lim_{x \to 0^-} f(x) = \lim_{h \to 0} -h \sin\left(\frac{1}{-h}\right) = 0$$

RHL= $\lim_{x \to 0^+} f(x) = \lim_{h \to 0} h \sin\left(\frac{1}{h}\right) = 0$

 \therefore LHL=RHL= f(0), it is continuous

LHD=
$$\lim_{x\to 0^-} f(x) = \lim_{h\to 0} \left[\frac{f(0-h)-f(0)}{-h} \right]$$

= $\lim_{h\to 0} \left[\frac{-h\sin\frac{1}{h}-0}{-h} \right]$ = does not exist

 \Rightarrow f(x) is not differentiable at x = 0

f(x) is continuous at x = 0 but not differentiable at x = 0

205 (b)

Since, |x - 1| is not differentiable at x = 1So, $f(x) = |x - 1|e^x$ is not differentiable at x = 1Hence, the required set is $R - \{1\}$

206 (d)

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} \qquad [\because f(x+y)]$$

$$= f(x)f(y)]$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h}$$

$$\Rightarrow f'(x) = f(x) \cdot \lim_{h \to 0} \frac{1 + h g(h)G(h) - 1}{h}$$

$$\Rightarrow f'(x) = f(x) \cdot \lim_{h \to 0} g(h) G(h)$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} G(h) \lim_{h \to 0} g(h) = ab f(x)$$

